Шрифт:
Тем не менее в конце первой главы мы приводим очень убедительный аргумент против теории Свенсмарка, высказанный одним швейцарским физиком. Около 40 тысяч лет назад магнитное поле Земли стало очень слабым. Геофизики называют этот эпизод «экскурс Лашамп». Вследствие ослабления магнитного поля Земли в земную атмосферу попало много космических частиц, и, как доказательство своего визита, они разбросали на своем пути «визитные карточки» — радиоактивные атомы. Согласно теории о связи космических лучей и облаков, не должны ли были они вызвать серьезное похолодание? Да, должны были. Однако этого не случилось.
Чтобы опровергнуть столь весомое возражение против его гипотезы, Свенсмарк по-новому взглянул на приключения космических лучей, мы их опишем во второй главе. Вы, разумеется, не видите их, но приблизительно два раза в секунду космические частицы проносятся сквозь ваше тело, пронзая макушку и исчезая в полу под вашими ногами. А если вы забираетесь на гору или летите в самолете, то подвергаетесь их нападениям даже чаще.
Впервые космические лучи обнаружил один австрийский ученый [3] около века назад, и с тех пор они были чем-то вроде не обязательной приправы к космическим блюдам. Конечно, космические лучи возбуждали любопытство ученых, но не считались необходимостью в домашнем хозяйстве Вселенной или Земли. Лишь недавно астрономы осознали, что космические лучи — это обязательный ингредиент в том колдовском зелье, из которого произошли звезды, планеты и химические вещества, нужные для жизни. И хотя специалисты не торопятся оценить их по достоинству, космические лучи, прибывающие сюда от далекого хора взорвавшихся звезд, продолжают каким-то образом воздействовать на нашу жизнь.
3
Речь идет об австро-американском физике Викторе Гессе (1883–1964), открывшем космические лучи в 1911–1912 гг. За это открытие Гесс совместно с Карлом Д. Андерсоном был удостоен Нобелевской премии по физике 1936 г.
Прежде чем космические лучи смогут достичь нас, им приходится пробиваться через три линии обороны: солнечное магнитное поле, магнитное поле Земли и земную атмосферу. Щедрый воздух нашей планеты — это одна из причин, почему Земля более пригодна для жизни, чем поверхность Марса, где космические лучи в сотни раз интенсивнее. На Земле только самые энергичные заряженные частицы могут добраться до дна моря. Они носят название мюонов, или тяжелых электронов, и появляются на свет, когда входящие космические лучи бомбардируют атмосферу.
Согласно предположениям Свенсмарка, мюоны помогают формировать низкие облака, охлаждающие мир. Чтобы решить головоломку, которую подкинул ему эпизод Лашамп, Свенсмарк проследил происхождение мюонов, используя одну немецкую компьютерную программу. Она позволяет просчитывать все атомные и субатомные события, которые происходят после соударений частиц космических лучей с молекулами газов, составляющих воздух. Свенсмарк обнаружил, что почти все мюоны, достигающие отметки в 2000 метров над уровнем моря, порождаются космическими лучами, которые обладают слишком высокой энергией, чтобы на них оказывали влияние изменения в магнитном поле Земли. Таким образом, получается, что нет причин ожидать ни большего количества мюонов во время эпизода Лашамп, ни сколько-нибудь заметного охлаждающего эффекта.
Основное направление климатологии начала двадцать первого века полагает, что облака покорно повинуются изменениям климата, вызванным какими-то другими причинами. Так ли это на самом деле? Или облака сами приказывают? Это тема третьей главы. Исследования, проведенные в Копенгагене, продемонстрировали, какие именно облака наиболее поддаются воздействию космических лучей и, таким образом, сильнее влияют на климат. Это низкие облака, покрывающие огромные территории Земли, — именно их мы видим во время полетов над океаном, где они создают блестящий, но монотонный пейзаж на тысячи километров.
В отличие от более высоких облаков, способствующих нагреванию планеты, облака, располагающиеся ниже 3000 метров, охлаждают ее. Когда в атмосферу проникает мало космических лучей, низких облаков тоже становится меньше, и Земля начинает нагреваться. В течение двадцатого века магнитная защита Солнца усилилась более чем вдвое и, таким образом, сократила как количество заряженных частиц, попадающих на Землю, так и облаков, что может объяснить большую часть глобального потепления, о котором рапортуют ученые-климатологи.
Но действительно ли облака в ответе за изменения климата? Весомый аргумент в пользу этой версии мы можем найти в Южном полушарии Земли. Специалисты были сбиты с толку возрастающим количеством доказательств того, что Антарктика выбирает собственный климатический путь. Когда весь мир нагревается, Антарктика становится холоднее, и наоборот. Сложные теории пытались объяснить раскольническое поведение Антарктики. Но если исходить из того, что облака руководят переменами климата, то аномалия Южного полушария вполне предсказуема. Антарктика — это всего лишь большая область, где облака согревают снежную поверхность, в то время как остальной мир они охлаждают.
Если подтвердится то, что облака управляют погодой, — это будет хорошей новостью для жителей всего мира. Это будет означать, что Солнце властно меняет климат Земли, воздействуя на него в том числе с помощью космических лучей, ответственных за большую часть потепления в двадцатом столетии. Если так, то роль углекислого газа, должно быть, весьма незначительна, и любое глобальное потепление двадцать первого века, вероятно, будет много меньше, чем ставшие уже традиционными предсказания о повышении среднемировой температуры на 3 или 4 градуса Цельсия.