Вход/Регистрация
О времени, пространстве и других вещах. От египетских календарей до квантовой физики
вернуться

Азимов Айзек

Шрифт:

В общем, я и теперь этим занимаюсь, только облекаю результаты своих размышлений в форму очерков и статей. Если хотите, присоединяйтесь ко мне: мы вместе побродим, оглядимся по сторонам и посмотрим, что получится.

Давайте начнем так…

Если верить Ньютону, каждый объект во Вселенной притягивает другой объект с силой (f), пропорциональной произведению масс этих объектов (m 1и m 2), деленной на квадрат расстояния между их центрами (d). Чтобы получить равенство, умножаем результат па гравитационную постоянную (g).

Это означает, что существует притяжение между Землей и Солнцем, между Землей и Луной, а также между Землей и всеми планетами, спутниками, метеоритами и каждой песчинкой космической пыли во Вселенной.

К счастью, Солнце так огромно по сравнению со всеми остальными объектами Солнечной системы, что при расчете орбиты Земли или любой другой планеты делается допущение (если рассматриваются только Солнце и конкретная планета), что они одни во Вселенной. Влияние остальных небесных тел может быть подсчитано позже.

Так же можно рассчитать орбиту спутника, предположив, что он и его основная планета одни во Вселенной.

Здесь есть кое-что, на мой взгляд, чрезвычайно интересное. Если Солнце многократно массивнее любой планеты, разве оно не должно оказывать влияние и на спутники, даже находясь на значительно большем расстоянии, чем его родная планета? Если так, каким образом можно оцепить это влияние?

Представим себе этот процесс в виде перетягивания каната, на одном конце которого находится спутник со своей планетой, а на другом — Солнце. Как поведет себя Солнце в этом соревновании?

Думаю, что астрономы все это давно подсчитали, однако я ни разу не видел результатов этих расчетов в литературе, поэтому решил выполнить их сам.

Вот что можно сделать. Давайте обозначим массу спутника m, массу его планеты (вокруг которой он вращается) m р, массу Солнца — m s. Расстояние от спутника до планеты у нас будет d р, а расстояние от спутника до Солнца — d s, Гравитационная сила, действующая между спутником и планетой, — f р, а между спутником и Солнцем — f s.Вот и все. Обещаю, больше вы не увидите никаких новых обозначений, по крайней мере в этой главе.

Из формулы 1 видно, что сила притяжения между спутником и планетой:

а между тем же спутником и Солнцем:

Нам интересно узнать, насколько гравитационная сила, действующая между спутником и планетой, сравнима с аналогичной силой, действующей между спутником и Солнцем. Иными словами, чрезвычайно любопытно вычислить отношение f р/f s. которое можно назвать «коэффициентом перетягивания каната». Чтобы его получить, следует разделить формулу 2 на формулу 3. Результат приведен в формуле 4:

При делении формула несколько упростилась. Во-первых, исчезла гравитационная постоянная, и нам не придется иметь дело с малыми числами и неудобными размерностями. С другой стороны, сократилась масса спутника (иными словами, для получения «коэффициента перетянутого каната» не имеет значения размер спутника).

В формуле остались отношение массы планеты к массе Солнца, а также квадрат отношения расстояния от спутника до Солнца к расстоянию от спутника до планеты.

Спутники имеют только шесть планет. Это Нептун, Уран, Сатурн, Юпитер, Марс и Земля (в порядке убывания расстояния от Солнца).

Произведя подсчет отношения масс, получим следующие результаты:

Как видите, отношение масс явно в пользу Солнца. Даже Юпитер — самая тяжелая из планет — не дотянул до 1/ 1000массы Солнца. В действительности суммарная масса всех планет (с учетом спутников, астероидов, комет и метеоритов) составляет не более 1/ 750массы Солнца.

Пока у Солнца имеются все шансы выиграть соревнования по перетягиванию каната.

Однако нам следует рассмотреть и отношение расстояний, а здесь все говорит в пользу планеты, потому что любой спутник располагается ближе к своей родной планете, чем к Солнцу. Тем более, что это отношение расстояний следует еще возвести в квадрат. После этого уже можно почти не сомневаться, что Солнце не перетянет канат. Но все-таки проверим.

Начнем с Нептуна. Он имеет два спутника — Тритон и Нереиду. Среднее расстояние каждого из них от Солнца примерно такое же, как среднее расстояние Нептуна от Солнца, — 2 797 000 000 миль. Среднее расстояние Тритона от Нептуна — 220 000 миль, а среднее расстояние Нереиды от Нептуна — 3 460 000 миль.

  • Читать дальше
  • 1
  • ...
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: