Шрифт:
Никто из греков, даже сам великий Архимед, не подумал, что не обязательно вводить в символ пробелы. Их легко можно заполнить каким-нибудь ничего не значащим символом. Например, поставим вместо пробела значок $. Тогда число 101 можно записать в виде А +$ – 'A. Если мы так и поступим, пробелов не будет, да и в значках над буквой больше нет необходимости. Теперь 1 — это А, 10 — А$, 100 — А$$ и т. д. Любое число, как бы велико оно ни было, может быть записано с помощью девяти букв и одного символа, ничего не обозначающего.
Казалось бы, что может быть проще? После того, как это придумано!
И тем не менее человечеству потребовалось больше пяти тысячелетий, считая от появления первых обозначений чисел, чтобы додуматься до введения в практику символа пустоты. К сожалению, имя гения, которому принадлежит эта величайшая заслуга, осталось неизвестным человечеству. Мы только знаем, что он был индусом и жил не позднее IX века.
Индусы назвали новый символ sunya,что означает «пустой». Этот символ вскоре был принят арабами, назвавшими его sifr.Это слово тоже обозначает «пустой», но уже на арабском языке. Позже оно было преобразовано в современные термины cipher(ноль), а потом через zefirumв zero.
Новая система, названная арабской (поскольку европейцы узнали ее от арабов), очень медленно добралась до стран Запада и вытеснила римскую.
Арабские числительные возникли в тех краях, где никогда не использовали латинский алфавит, поэтому форма цифр ничем не напоминала буквы римского алфавита. С их появлением была устранена путаница между словами и цифрами, а получившая широкое распространение yematriaпостепенно утратила свое значение и перестала занимать умы широких масс.
Арабские цифры, которыми все мы сегодня пользуемся, — это 1, 2, 3, 4, 5, 6, 7, 8, 9 и конечно же 0. Мы привыкли к этим цифрам и, пожалуй, даже не осознаем, насколько полно. К примеру, если в настоящей главе вам что-то показалось странным или сомнительным, то, возможно, оттого, что я в ней намеренно не приводил ни одного арабского числительного.
Мы все знаем, насколько появление арабских цифр упростило арифметические вычисления. Они избавили людей от множества ненужных забот, в основном благодаря присутствию зеро, которое является воистину бесценным. Необыкновенная важность зеро нашла свое отражение и в английском языке. Ведение арифметических подсчетов носит слегка устаревшее название ciphering (cipher— ноль), а процесс расшифровки какого-либо кода — deciphering.
Теперь, если вы вернетесь к названию этой главы, то поймете, что его следует понимать буквально. Ничего считается! И появление специального символа для обозначения ничего является величайшим открытием человечества.
Глава 13 БУКВОЙ С ОБОЗНАЧАЕТСЯ СКОРОСТЬ СВЕТА В ПУСТОТЕ
Вряд ли можно назвать физическую формулу более известную, чем e = mc 2, полученную Эйнштейном. Ее знают все: высокоинтеллектуальные читатели научной фантастики, физики-атомщики, студенты, газетные репортеры, домашние хозяйки, водители автобусов и даже некоторые конгрессмены.
Конечно, знать — это еще не значит понимать. Точно так же умение быстро пробормотать «Отче наш» не является свидетельством глубины религиозных чувств.
Давайте внимательно рассмотрим эту формулу. Каждая буква является начальной буквой в слове, обозначающем соответствующую величину: с — первая буква слова energy(энергия), m — слова mass(масса), а с — слова celeritas(скорость по-латыни). Последняя величина — это скорость света в вакууме.
Но это еще не все. Следует также иметь представления о единицах измерения всех ее составляющих. К примеру, нет смысла говорить о массе, равной 2,3. Масса может быть равна 2,3 грамма, 2,3 фунта, 2,3 тонны и т. д.
Теоретически можно выбирать любые удобные единицы измерения. Однако на практике обычно массу выражают в граммах, расстояние в сантиметрах, а время в секундах, а все последующие единицы выводят из трех фундаментальных.
Поэтому m в формуле Эйнштейна выражается в граммах (г), с — в сантиметрах в секунду (см/сек). Кстати, обратите внимание, что предлог «в» в выражении «сантиметры в секунду» при кратком обозначении единицы измерения заменен дробной чертой. Дело в том, что для получения скорости, выраженной количеством сантиметров, пройденных за 1 секунду, следует число сантиметров разделить на число секунд. Если, например, за 8 секунд пройдено 24 сантиметра, скорость равна 24 см:8 сек = 3 см/сек.
Но вернемся к предмету нашего разговора. В формуле величина с возведена к квадрат: с х с = с 2, см/сек х см/сек = см 2/сек 2.
Точно так же, площадь участка земли 60 х 60 футов будет равна не 3600 футов, а 3600 квадратных футов.
Возникает вопрос: в каких единицах будет измеряться е? На него ответит сама формула Эйнштейна, если мы произведем с единицами измерения те же действия, что и с любыми другими алгебраическими символами. Напомню, е = mс 2. Если m измеряется в г, а с 2— в см 2/сек 2, то единица измерения е — г см 2/сек 2.