Шрифт:
Когда я начал объяснять, вскоре стало ясно, что Джон Прескилл обдумал этот вопрос и пришёл к тому же выводу, что и я. Мы оба начали с того, что атом не может быть ионизирован, пока не достигнет точки, где температура вблизи горизонта поднимается примерно до 100 000 градусов. Это случается очень близко к горизонту, примерно в миллионной доле сантиметра от него. Именно там мы должны наблюдать электрон. Это не выглядит большой проблемой; миллионная доля сантиметра — не такая ужасно малая величина.
Что бы тут сделал Гейзенберг? Ответ, конечно, состоит в том, что он достал бы свой микроскоп и подсветил бы атом светом подходящей длины волны. В данном случае, чтобы увидеть атом, когда он находится в миллионной доле сантиметра от горизонта, он должен использовать фотоны с длиной волны 10– 6 сантиметра. А теперь мы попадаем в привычную ловушку: фотон со столь малой длиной волны несёт большую энергию; в действительности у него такая энергия, что при попадании в атом последний будет ионизирован. Другими словами, любая попытка доказать, что атом не был ионизирован горячим растянутым горизонтом, сама обернётся ионизацией атома. Пойдя ещё дальше, мы обнаружим, что любая попытка увидеть, действительно ли электрон и протон совершают случайное блуждание по горизонту, приведёт к выбросу частиц, которые будут разбросаны по всему горизонту.
Я не очень хорошо помню эту дискуссию, но припоминаю, что Дон очень оживился и произнёс своим самым уверенным тоном, что я не шутил, когда называл это дополнительностью. Это в точности та самая вещь, о которой говорили Бор и Гейзенберг. На самом деле попытки экспериментально опровергнуть дополнительность чёрных дыр очень похожи на попытки опровержения принципа неопределённости — сам эксперимент порождает ту неопределённость, которую призван устранить.
Мы обсудили, что случится, когда атом ещё более приблизится к горизонту. Гейзенберговский микроскоп должен будет использовать ещё более энергичные кванты. В конце концов, чтобы следить за атомом на расстоянии планковской длины от горизонта, нам понадобится обстреливать его фотонами с энергией даже больше планковской. О том, что собой представляют такие столкновения, никто ничего не знает. Ни один ускоритель в мире никогда не разгонял частицы до энергии сколько-нибудь близкой к планковской. Джон Уилер сформулировал эту идею как принцип:
Любое теоретическое доказательство того, что дополнительность чёрных дыр ведёт к наблюдаемым противоречиям, непременно строится на произвольных допущениях о «физике за пределами планковского масштаба», или, иными словами, на допущениях о природе вещей, лежащих далеко за пределами нашего опыта.
Тогда Прескилл поднял вопрос, который меня взволновал. Допустим, в чёрную дыру сбросили бит информации. Согласно моей точке зрения, некто снаружи может собрать хокинговское излучение и в конце концов восстановить этот бит. Но, предположим, что, получив этот бит, он сам прыгнет в чёрную дыру, неся бит с собой. Окажется ли внутри две копии этого бита? Это как если бы после получения пакета от почтальона вы остались дома, а ваша подруга пришла к вам. Не возникнет ли противоречия, когда наблюдатели встретятся и сравнят свои записи внутри чёрной дыры?
Вопрос Джона меня потряс. Я не задумывался о такой возможности. Если кто-то внутри обнаружит две копии одного и того же бита, это будет нарушением принципа квантовой нексерокопируемости. Это был наиболее серьёзный вызов дополнительности чёрных дыр, с которым мне пришлось столкнуться. Ответ, хотя я несколько недель этого не понимал, был отчасти дан самим Прескиллом. Он предположил, что две копии, возможно, не сумеют встретиться прежде, чем столкнутся с сингулярностью. Физика окрестностей сингулярности — это глубоко загадочная терра инкогнита квантовой гравитации. Это позволило бы нам уйти от проблемы. Если так, то идеи Дона Пейджа играли бы центральную роль в обезвреживании первоначальной бомбы Прескилла.
Что происходит с информацией, упавшей в чёрную дыру?
a) Она пропадает
b) Она выходит с хокинговским излучением
c) Она остаётся (доступна) в остатках чёрных дыр (включая остатки, которые распадаются в масштабах времени больших сравнительно с хокинговским излучением)
d) Нечто иное
Наша дискуссия неожиданно оборвалась, когда кто-то объявил, что вот-вот начнётся следующий доклад. Думаю, это могла быть последняя лекция на конференции, и я не знал, о чём она и кто её читает. Я был слишком обеспокоен вопросом Джона, чтобы сконцентрироваться. Но прежде чем конференция окончательно завершилась, один из организаторов прервал мои размышления. Джо Полчински поднялся и сказал, что хотел бы провести опрос: «Считаете ли вы, что информация теряется, когда чёрные дыры испаряются, как полагает Хокинг, или вы думаете, что она возвращается обратно, как утверждают 'т Хоофт и Сасскинд?» Я думал, что перед началом конференции голоса распределились бы со значительным перевесом в пользу Хокинга. Мне было крайне интересно узнать, склонны ли люди на конференции хотя бы колебаться по этому вопросу.
Участников попросили проголосовать за один из трёх привычных вариантов плюс ещё один. Вот описание предложенных вариантов.
1. Версия Хокинга: информация, которая падает в чёрную дыру, необратимо теряется.
2. Версия 'т Хоофта и Сасскинда: информация утекает назад вместе с фотонами и другими частицами хокинговского излучения.
3. Информация оказывается захваченной в крошечных остатках планковских размеров.
4. Нечто иное.
После каждого варианта Джо подсчитывал поднятые руки и записывал результаты на белой доске у входа в аудиторию. Кто-то потом сфотографировал эту доску. И благодаря Джо эти итоги сохранились.
Окончательные результаты:
25 голосов за потерю информации;
39 голосов за информацию, уходящую с хокинговским излучением;
7 голосов за остатки;
6 голосов за нечто иное.
Победа с минимальным перевесом — 39 голосов за то, что, по сути, было принципом дополнительности чёрных дыр, против 38 за все остальные варианты вместе взятые — это было не столь радостно, как может показаться. Что считать настоящей победой? 45 к32? 60 к 17? Имеет ли вообще значение, что думает большинство? Наука, в отличие от политики, как считается, не должна подчиняться общепринятым мнениям.