Шрифт:
Так что останки Гранта, его жены Джулии, их гробы и туристы, пришедшие на них посмотреть, — всё это образы информации, записанной на стенах мавзолея.
Но почему надо на этом останавливаться? Представьте огромную сферу, заключающую в себе всю Солнечную систему. Грант, Джулия, гробы, туристы, мавзолей, Земля, Солнце и остальные восемь планет (Плутон всё-таки планета!) — всё это закодировано информацией на огромной сфере. И так можно продолжать, пока мы не достигнем границ Вселенной или бесконечности.
Очевидно, что вопрос о том, где находится конкретный бит информации, не имеет однозначного ответа. Обычная квантовая механика вносит некоторую неопределённость в такие вопросы. Пока кто-то не посмотрит на частицу или, в нашем случае, на любой объект, имеет место квантовая неопределённость его положения. Но как только объект подвергся наблюдению, все придут к согласию о том, где он находится. Если объектом окажется атом тела Гранта, обычная квантовая механика делает его положение немного неопределённым, но она не поместит его за границами пространства или даже за стенками гроба. Однако если спрашивать о том, где находится бит информации, неправильно, то как надо ставить этот вопрос?
Пытаясь достичь всё большей и большей точности, особенно при одновременном учёте гравитации и квантовой механики, мы приходим к математическим представлениям, включающим узоры из пикселов, танцующих на далёком двумерном экране, и о секретном коде, преобразующем перемешанные узоры в целостные трёхмерные образы. Но, конечно, не существует экрана, покрытого пикселами и окружающего все области пространства. Гроб Гранта — это часть мавзолея Гранта, который является частью Солнечной системы, содержащейся в галактической сфере, охватывающей Млечный Путь… и так, пока не будет охвачена вся Вселенная. На каждом уровне всё, что мы охватили, может быть описано как голографический образ, но когда мы ищем саму голограмму, она всегда оказывается на следующем уровне [117] .
117
Голографический принцип приводит к странным вопросам вроде тех, что можно встретить в «Amazing Stories» (первый в мире научно-фантастический литературный журнал, издававшийся с 1926 по 2005 год. — Прим. перев.) и других дешёвых научно-фантастических журналах 1950-х годов. «Является ли наш мир трёхмерной иллюзией, порождённой неким двумерным пиксельным миром, возможно, запрограммированным в каком-то космическом квантовом компьютере?» Или ещё более захватывающе: «Смогут ли будущие любители моделировать реальность на экране из квантовых пикселов стать создателями своих собственных Вселенных?» Ответ на оба эти вопроса — да, но…
Безусловно, мир может целиком находиться в некоем футуристическом квантовом компьютере, но я не знаю, что может добавить к этой идее голографический принцип, за исключением того, что число элементов в цепях такого компьютера может быть несколько меньше, чем кажется необходимым. Вместо 10180 элементов, необходимых для заполнения Вселенной, будущие создатели миров могут обнаружить, что благодаря голографическому принципу им хватит всего 10120 пикселов. (Для сравнения: в цифровых камерах пикселов несколько миллионов.)
При всей своей странности — а он очень странный — голографический принцип уже стал частью общепринятой теоретической физики. Это больше не догадка из области квантовой гравитации; он стал повседневным рабочим инструментом, отвечающим на вопросы не только о квантовой гравитации, но и о таких прозаических вещах, как атомные ядра (см. главу 23).
Хотя голографический принцип радикально перестраивает законы физики, его доказательство не требует изощрённой математики. Всё начинается со сферической области пространства, которая выделена воображаемой математической границей. Эта область содержит всевозможные «вещи»: водород в виде газа, фотоны, сыр, вино — всё что угодно, лишь бы оно не переливалось за границу. Я буду называть всё это вещами.
Самая массивная вещь, которую можно запихнуть в нашу область, — это чёрная дыра, горизонт которой совпадает с границей. Вещи не должны быть массивнее её, в противном случае они не поместятся внутри границы, но существует ли какой-то предел, ограничивающий число битов информации в этих вещах? Нас интересует определение максимального числа битов, которое можно запихнуть внутрь сферы.
Теперь представьте себе материальную сферическую оболочку— Уже не воображаемую границу, а сделанную из настоящего вещества, — окружающую всю рассматриваемую систему. Эта оболочка, будучи сделанной из реальной материи, имеет собственную массу. Из чего бы она ни состояла, её можно сжимать внешним давлением Или гравитационным притяжением находящегося внутри вещества, Пока она идеально не совпадёт с границей области.
Подбирая массу оболочки, можно создать горизонт, который совпадёт с границей области
Исходные вещи, которые были у нас с самого начала, содержат некоторое количество энтропии — скрытой информации, — значение которой мы уточнять не будем. Однако нет сомнений в том, что окончательная энтропия — это энтропия чёрной дыры, то есть её площадь, выраженная в планковских единицах.
Для завершения доказательства остаётся лишь напомнить, что второе начало термодинамики требует, чтобы энтропия всегда возрастала. Поэтому энтропия чёрной дыры должна быть больше, чем у любых исходных вещей. Сводя всё воедино, получаем доказательство удивительного факта: максимальное число битов информации, которое может при каких угодно условиях поместиться в области пространства, равно числу планковских пикселов, которые можно уместить на площади её границы. Неявно это означает, что существует «граничное описание» всего, что происходит внутри области пространства; поверхность границы — это двумерная голограмма трёхмерной внутренней области. Для меня это самый лучший тип доказательства: пара фундаментальных принципов, мысленный эксперимент и далеко идущие выводы.
Существует другой способ описания голографического принципа. Если граничная сфера очень велика, любая небольшая её часть будет очень похожа на плоскость. В прошлом люди заблуждались, считая Землю плоской, из-за большого её размера. Пусть наша сфера во много раз больше, скажем, миллиард световых лет в диаметре. При взгляде из точки, находящейся внутри такой сферы, но всего в нескольких световых годах от границы, сферическая поверхность будет казаться плоской. Это означает, что обо всём происходящем в пределах нескольких световых лет от границы можно думать как о голограмме плоского листа пикселов.