Шрифт:
Первая заметка Ландау появилась в 1932 году — еще до сообщения об открытии нейтрона. Называлась она «К теории звезд». Ландау поставил вопрос: какой может быть масса звезды, состоящей из вырожденного ферми-газа? Чандрасекар поставил тот же вопрос раньше и ответил на него (судя по всему, Ландау не знал о работе индийского ученого, поскольку ни словом о ней не обмолвился — пример отсутствия контактов между физиками и астрофизиками). Но Ландау пошел дальше. Он писал: «При М > М0 во всей квантовой теории не существует причины, которая предотвратила бы коллапс системы в точку». Именно то, о чем мы только что говорили! В 1937 году Ландау вновь обратился, к теории звезд, опубликовав статью «Об источниках звездной энергии». Нейтроны уже были известны. Нейтронный газ можно сжать значительно сильнее, чем газ из протонов и электронов, ' ведь нейтроны не заряжены, между ними не действуют силы электрического отталкивания. Естественно был поставлен вопрос: а если? А если звезда состоит из нейтронов? А если во всех звездах есть нейтронные ядра? А если эти нейтронные ядра и являются источниками звездной энергии?
Такие вопросы поставил Ландау в своей статье. На первый из вопросов ответили американские физики Оппенгеймер и Волков через год после того, как прочитали статью советского ученого. Интересно, что Оппенгеймер с Волковым тоже не обратили внимания на работу Бааде и Цвикки!
Оппенгеймер и Волков первыми решили задачу о том, как может выглядеть нейтронная звезда, какова ее структура. И помогла им в этом общая теория относительности. Допустим, сказали они, что звезда целиком состоит из нейтронов. В нейтронном газе существует давление вырождения, которое в принципе способно уравновесить поле тяжести. Уравновесить в любой точке звезды. Но чему равна сила тяжести в любой точке звезды? Чтобы рассчитать это, Оппенгеймер и Волков применили общую теорию относительности. И уравновесили тяжесть давлением вырожденного нейтронного газа. Не простого газа, а идеального! Впрочем, в физике именно идеальный газ и является самым простым для расчетов. В идеальном газе частицы друг с другом не взаимодействуют, и это существенно упрощает вычисления.
Всегда ли давления идеального вырожденного нейтронного газа достаточно для того, чтобы поддержать равновесие звезды? Нет, ответили Оппенгеймер и Волков. Не может существовать нейтронная звезда с массой большей, чем 0,7 массы Солнца. Это меньше предельной массы белого карлика! Впрочем, эта странность не заинтересовала Оппенгеймера с Волковым, как не интересовали их и сами белые карлики — астрофизические проблемы были им чужды. Как бы то ни было, в 1938 году физики теоретически доказали: да, нейтронные звезды могут существовать.
Правда, сами Оппенгеймер и Волков не очень, надеялись, что их теоретические расчеты когда-нибудь реализуются в астрономических открытиях. Они писали:
«Представляется неправдоподобным, чтобы статические нейтронные ядра играли большую роль в звездной эволюции».
Важность проблемы была таким образом снята, и сама задача стала выглядеть не более чем физическим ребусом.
Но ребус этот не был еще решен окончательно. Что же случится с нейтронной звездой, если масса ее окажется больше найденного предела 0,7 массы Солнца? «Звезда будет бесконечно сжиматься», — сказали Оппенгеймер и Волков, повторив слово в слово вывод, сделанный ранее Ландау. Но что стоит за этими словами?
За этими словами стояло предсказание черных дыр.
О звездах, с поверхности которых не может улететь свет, писали в свое время Мичелл и Лаплас. Но физика черных дыр гораздо богаче! И прежде всего, черная дыра — объект не только невидимый, но принципиально нестационарный. Вот это впервые сказали Оппенгеймер и Волков. А несколько месяцев спустя Оппенгеймер и Снайдер впервые описали, как должна выглядеть черная дыра для нас, наблюдающих с Земли, и для гипотетического космонавта, падающего вместе с веществом звезды к ее центру.
Оказывается, далеко не все равно — откуда смотреть!
Одно и то же явление может протекать по-разному, если наблюдать его из различных физических систем отсчета, — так утверждает теория относительности. Время, как вы знаете, сокращается, если двигаться со скоростью, близкой к скорости света. Но если и вы, и космонавт в ракете движетесь равномерно и прямолинейно, то как узнать, кто из вас имеет субсветовую скорость, а кто — черепашью? С вашей точки зрения, летит он, а с его точки зрения, летите вы. С вашей точки зрения, быстрее состариться должны вы, а с его точки зрения — он. Как это проверить? Вам нужно опять встретиться и сравнить показания часов. Но встретиться-то вы не можете — ведь и вы, и он летите равномерно и прямолинейно в разных направлениях. Чтобы иметь возможность встретиться, кто-то из вас должен развернуться и полететь в обратном направлении. Но тот, кто начнет разворачивать свой корабль, сразу испытает действие ускорения. Тот же, кто летит по-прежнему, никаких ускорений не испытает. А ускорение, согласно принципу эквивалентности, то же самое, что и поле тяжести. Значит, можно считать, что тот, второй космонавт, вовсе не разворачивал звездолет, включая двигатели, а просто оказался на время в поле тяжести какого-то тела. В поле тяжести — мы уже говорили об этом — часы идут медленнее, даже световые колебания совершаются с меньшей частотой. И чем больше ускорение при развороте (то есть чем больше поле тяжести), тем больше замедление времени. Когда вы снова встретитесь с космонавтом, который улетел и вернулся, окажется, что именно он остался молодым — ведь именно его, а не ваши часы шли медленнее…
А теперь вернемся к черной дыре. Представьте, что звезда начала неудержимо сжиматься. Произошел, как говорят астрофизики, катастрофический коллапс, и вы начали падать к центру звезды вместе с ее веществом. Все кругом падает вместе с вами. Вам просто не за что зацепиться взглядом, падает ведь все вещество звезды! И получается, что вы совершенно неподвижны относительно тех частиц вещества, которые летят поблизости от вас и с которыми вы можете сравнивать показания своих часов и длины своих линеек. Вы неподвижны друг относительно друга даже в момент пересечения сферы Шварцшильда. Для вас при пересечении этой страшной поверхности ничего страшного не произойдет! Вы будете все ускорять свое падение и за доли секунды — по вашим часам — окажетесь в центре звезды вместе со всем ее веществом, которое свалится вам на голову (хотя о какой голове можно говорить, если плотность вещества в центре звезды окажется бесконечно большой).
А теперь взглянем на ваше падение с точки зрения астронома, следящего за коллапсом звезды в телескоп.
Вот он видит, как в момент, когда газовое давление перестает уравновешивать тяжесть, звезда вдруг начинает быстро уменьшаться в размерах. За полчаса она сжимается (падает…) от размеров Солнца до радиуса нейтронной звезды. Сжатие продолжается, и вы начинаете замечать странности. Вместо того чтобы ускоряться — ведь сила тяжести растет, — падение замедлилось! Да, с приближением к сфере Шварцшильда сила тяжести устремляется к бесконечности.