Шрифт:
Лемма 4 говорит нам, что пространство Минковского, традиционно трактуемое как континуальное, в действительности должно быть дискретно-неотделимым. Но этого не достаточно для того, чтобы свести вместе релятивизм и квантовую физику. Событие, представленное световой точкой в этом пространстве, не описывается релятивизмом, уравнения ОТО там распадаются именно потому, что они не имеют дискретную метрику, тогда как КМ выражает это в нормированном векторном пространстве. Еще одно несоответствие между этими теориями заключается в том, что время в релятивизме вещественно и, как мы выяснили, анизотропно, а в КМ оно мнимое и уже поэтому симметричное. Именно лемма 9 дает нам ключ к проблеме их математической несовместимости.
Нам остается лишь признать тот факт, что в дискретной метрике световой конус в пространстве Минковского является лишь асимптотическим приближением к реальной картине. Фактически же этот конус должен быть единичным, равнобочным гиперболоидом. Его также называют циркулярным гиперболоидом, поскольку он получается вращением гиперболы вокруг той или иной оси. Гиперболоид допускает две формы: однолистную и двулистную.
Рис.11
Если в пространстве Минковского за ось вращения принимается стрела времени, то мы получаем 2-листный гиперболоид, поскольку именно он в этом случае является t-подобным. При этом его внешность есть 1-листный s-подобный гиперболоид, полученный вращением вокруг пространственной оси, ассоциированной с расслоением Вселенной по стратам W.
В релятивизме нас в первую очередь интересует именно 2-листный несвязный гиперболоид. Его называют еще квази-сферой (но не псевдосферой!), поскольку он обладает некоторыми общими свойствами с ней. В частности, его Гауссова кривизна оказывается положительной, как и у сферы, при том что кривизна «s-подобного» гиперболоида отрицательна. Более обще: в 4-мерном пространстве (w, x, y, z) две конические гиперповерхности, представленные тождественными квадратичными формами с разницей лишь в знаке, при пересечении их гиперплоскостью w = r, дают сферу и гиперболоид соответственно.
В литературе именно «s-подобный» гиперболоид принято связывать с моделями открытой параболической Вселенной, подчиняющейся геометрии Лобачевского с отрицательной кривизной. В данном представлении такой геометрией может обладать только нелокальный мир Маха и Бома, в котором все связано со всем. В релятивистской (причинной) Вселенной, берущей начало в Большом взрыве и динамически развивающейся внутри t-подобного гиперболоида, геометрия должна быть Римановой, т.е. асимптотически сферической. При этом классически прямая геометрия Евклида («коническая») оказывается сингулярной, т.е. вырожденной.
Унитарная квази-сфера бикватернионов обеспечивает представление группы Лоренца O(1, 3). Это связано с тем, что кватернионы, рассматриваемые как алгебра над множеством действительных чисел, образуют 4-мерное вещественное векторное пространство, позволяющее получить метрику Лоренца (2.1), которая имеет сингулярность в пределе (4.9). Условие нормировки мы выразили фильтрацией (4.10). Математически замечательным здесь оказывается то, что если ввести унитарную норму на факторизованном пространстве Минковского M/t, подобную норме в комплексной плоскости КМ, то произойдет неявным образом переход к дискретной метрике, при которой континуальные дифференциалы метрики Лоренца действительно станут физическими квантами, т.е. их олицетворением. Ведь базисные векторы уже есть по сути нормированные дифференциалы.
В аналитической геометрии квадратичное уравнение такого гиперболоида отличается от уравнения светового конуса лишь тем, что в нем появляется константная единица, аналогичная унитарной норме вектора состояния. Т.о. Лоренцев интервал (2.1), т.е. метрика с t-подобной сигнатурой в дискретной записи должна иметь вид:
(7.7)
Понятно, что в КМ эта неустранимая единица присутствует в виде постоянной Планка в принципе неопределенности. Она связана с квантом времени, выраженным через дискретный (и формально обратимый) оператор Н. Т.о. единица из (7.8) переходит в область действия волновой функции с преобразованием декартовых координат к полярным координатам для унитарной сферы. В СТО и ОТО она приобретает смысл лишь как нормировочная поправка на граничных условиях и связана с квантом времени, так что элемент геодезической не может быть меньше этой величины:
(7.8)
Здесь dt и ds есть физические кванты времени и пространства (Планковские единицы) в отличие от интервала dS и координаты dt в метрическом смысле. Физический и/или психофизический смысл этой единицы в метрике Лоренца (2.1) такой же, каким он должен быть для КМ: поправка заключается в том, что время вмешивается во все процессы, смещая их на квант времени и спасая нас тем самым от сингулярности. При этом формально можно вернуться от метрики гиперболоида к канонической метрике конуса (2.1):
(7.9)
Топологически это значит, что световой конус является замыканием светового гиперболоида, так что все световые точки конуса, включая точку события, являются точками прикосновения для релятивистского причинного (дискретного) мира. Гиперболоид содержит класс всех минимальных экстремалей для ненулевых геодезических. В этом смысле можно считать, что сам конус действительно является континуальным – и ровно поэтому сингулярным, а его мера Лебега тождественно равна нулю на любом интервале, . В дифференциальной геометрии гипербола и конус связаны понятием индикатрисы как касательной. Для нас гораздо важнее то, что гиперболоид является таким ограничением внутренности светового конуса, что он теперь есть ультрафильтр над множеством световых (сингулярных) точек метрики Лоренца.