Шрифт:
У нас получилась изогнутая математическими плоскогубцами кривая. В уравнении для у функция, которая преобразует x в x2, ведет себя подобно обычному инструменту для сгибания материала. Когда ее прикладывают к любой точке на оси х (прямую от точки х до точки х2 можно представить в виде прямого куска проволоки), плоскогубцы изгибают и вытягивают этот кусок проволоки в направлении вниз так, чтобы получилась изогнутая арка, как показано на рисунке.
А какую роль играет число 4 в уравнении у = 4 — x2? Это гвоздь, на который повесят картину на стену. Он поднимает изогнутые арки из проволоки на 4 единицы вверх. Так как при этом все точки кривой поднимаются на одинаковую высоту, то она считается постоянной функцией.
Данный пример иллюстрирует двойственный характер функций. С одной стороны, это инструменты: x2 изгибает часть оси х, а 4 — ее лифт. С другой — строительные блоки: 4 и x2 можно рассматривать как составные части более сложной функции 4 — х2, точно так же, как провода, аккумуляторы и транзисторы — составные части радиоприемника.
Как только вы начинаете смотреть на мир подобным образом, сразу же везде замечаете функции. Описанная выше в виде арки кривая, в математике называемая параболой, — это автограф, который дала квадратичная функция за кулисами. Ищите ее, когда любуетесь струями фонтана. И если вам доведется побывать в международном аэропорту Детройта, обязательно остановитесь у фонтана терминала Delta, чтобы насладиться потрясающими резвящимися параболами [52] .
52
Рекламный ролик о функциях водяных струй в аэропорту Детройта, созданный WET Design, можно посмотреть на сайте http://www.youtube.com/watch?v=VSUKNxVXE4E.
Уилл Хоффман и Дерек Бойл сняли интригующее видео о параболах и их экспоненциальных кузинах, кривых, называемых цепной линией (линия, форму которой принимает гибкая однородная нерастяжимая тяжелая нить или цепь, — отсюда и название). См. WNYC/NPR Radio Lab presents Parabolas (etc.) на сайте http://www.youtube.com/watch?v=rdSgqHuI-mw.
Параболы и константы ассоциируются с более широким классом функций — степенными функциями вида xn, в которых значение переменной x возводится в фиксированную степень n. Для параболы n = 2, для константы n = 0.
Разные значения n дают различные ручные инструменты. Например, возведение х в первую степень (n = 1) дает функцию, которая работает как пандус, отражая устойчивое увеличение роста или спада. Такая функция называется линейной, потому что ее графиком, построенным по точкам с координатами (x, y), является прямая линия. Если вы оставите на улице пустое ведро во время непрекращающегося ливня, то количество воды в нем будет расти линейно во времени.
Еще один полезный инструмент — обратно пропорциональная квадратичная функция у = 1/x2, здесь n = –2. (Степень этой функции равна –2, так как x2 стоит в знаменателе.) Эта функция хороша для описания затухания волн и ослабления сил в зависимости от расстояния х. Например, так затихает звук по мере удаления от источника.
Такие степенные функции служат строительными блоками, используемыми учеными и инженерами для описания роста и спада, которые происходят не слишком быстро. Но если нужен математический динамит, пора распаковать экспоненциальные функции. Они описывают все возможные быстропротекающие процессы — от цепных ядерных реакций до пролиферации бактерий в чашке Петри. Наиболее известный пример — функция у = 10x, то есть 10 возведено в степень х. Не путайте ее с ранее рассмотренными степенными функциями. Здесь показатель (степень х) является переменной, а основание (число 10) постоянной, тогда как в степенной функции, подобной х2, все наоборот. Такая перемена мест (переменной и константы) приводит к огромной разнице между этими функциями: при увеличивающемся значении x экспоненциальная функция с показателем x в конечном итоге растет быстрее любой степенной функции, независимо от ее степени. Экспоненциальный рост — невообразимо быстрый рост.
Вот почему так трудно сложить лист бумаги пополам больше семи-восьми раз [53] . Каждое сложение листа удваивает его толщину, что приводит к ее (толщины) увеличению в геометрической прогрессии. В то же время длина, каждый раз сжимаясь пополам, уменьшается по экспоненциальному закону. После семи сложений толщина стандартного листа из записной книжки становится больше его длины, и поэтому дальше его складывать нельзя. Причем неважно, сколько усилий прикладывает человек при складывании. Предположим, лист можно сложить n раз — в результате стопка должна иметь 2n слоев. Здесь не может быть линейной зависимости, и еще одно сложение невозможно, если толщина стопки больше ее длины.
53
41. Историю о приключениях Бритни Галливан со складыванием бумаги см. в B. allivan, How to fold a paper in half twelve times: An ‘impossible challenge’ solved and explained, Pomona, CA: Historical Society of Pomona Valley, 2002 на сайте http://pomonahistorical.org/12times.htm.
Задача считалась нерешаемой, пока в 2002 году Бритни Галливан, ученица старшего класса средней школы, не доказала обратное. Сначала она вывела формулу
L =
которая позволяла посчитать максимальное количество сложений n, где Т — толщина листа бумаги, L — его длина, и складывается он только в одном направлении. Обратите внимание на запрещающее присутствие экспоненциальной функции 2n в двух местах: первый раз для учета удвоения толщины пачки при каждом сложении, а во второй — чтобы учесть двукратное сокращение ее длины.
Используя свою формулу, Бритни пришла к выводу, что ей понадобится специальный рулон туалетной бумаги почти в три четверти мили длиной. Она купила бумагу и в январе 2002 года отправилась в торговый центр в своем родном городе Помона, где и размотала ее. Семь часов спустя с помощью родителей девочка побила мировой рекорд, сложив бумагу двенадцать раз!
В теории также предполагается, что экспоненциальный рост увеличит ваш банковский счет. Если ваш вклад растет с годовой процентной ставкой, равной r, то через год сумма увеличится в (1 + r) раз от первоначального размера вклада; после двух лет она вырастет в (1 + r)2 раз, а после х лет — в (1 + r)х раз. Таким образом, чудо погашения долга [54] , о котором мы так часто слышим, вызвано действием экспоненциального роста.
54
Здесь речь идет о том, что если процентная ставка депозита выше ставки по кредиту, то через несколько лет сумма на депозите может погасить сумму кредита. Прим. ред.