Шрифт:
Фактически прокариоты стали «видны» эволюционным биологам в 1977 году, после выхода революционной работы Вёзе и его коллег по филогенезу рРНК (Woese, 1987) [26] . Рассмотренное в общем контексте, открытие Вёзе является эпохально важным и, возможно, даже заслуживает сравнения с открытием структуры ДНК. Вёзе установил, что в одной молекулярной структуре, а именно последовательности нуклеотидов рРНК, выявляется очевидная консервативность во всем диапазоне клеточных форм жизни. Кроме того, чрезвычайно информативным оказался и филогенетический анализ этой универсальной консервативной молекулы: он показал, что рРНК, в некотором приближении, эволюционирует с постоянной скоростью, то есть подчиняется модели молекулярных часов. Это привело к еще одному важному открытию, ставшему одним из символов эволюционной биологии конца ХХ века, – трехдоменному древу жизни (см. рис. 2–3; Woese et al., 1990). Тремя доменами являются бактерии, археи и эукариоты. Домен архей был открыт Джорджем Фоксом и Вёзе сравнительным анализом рРНК, когда в новой группе ничем, казалось бы, не примечательных «бактерий» обнаружились существенные отличия как от остальных бактерий, так и от более сложных эукариотических организмов. В дополнение к разграничению трех доменов, Вёзе и его коллеги использовали филогенетический анализ рРНК для идентификации нескольких основных ветвей архей и бактерий (Woese, 1987). Из этого следовало, что эволюция прокариот столь же доступна для изучения, как эволюция сложных эукариот, – концепция, чуждая микробиологам до работы Вёзе (Stanier and Van Niel, 1962). Благодаря достижениям Вёзе, его сотрудников и последователей появилась все усиливающаяся тенденция приравнивать филогенетическое древо рРНК, с его трехдоменной структурой, к древу жизни Дарвина и Геккеля (Pace, 2009а, 2006). В течение нескольких лет после публикации открытий Вёзе стало ясно, что топологически древо рРНК (по крайней мере, в своих основных чертах) конгруэнтно деревьям некоторых из самых консервативных белков, таких как рибосомные белки, факторы трансляции, субъ единицы ДНК-зависимой РНК-полимеразы и мембранные АТФазы.
26
Здесь стоит сказать несколько слов о Карле Вёзе, создателе молекулярной филогенетики и первооткрывателе архей, который скончался уже после публикации оригинала этой книги, 30 декабря 2012 года, на 85-м году жизни (Goldenfeld N., Pace NR. Retrospective. Carl R. Woese (1928–2012) // Science. 2013 Feb 8;339(6120):661). Конечно, и при его жизни у коллег не было никаких сомнений в том, что он был крупнейшим ученым, подлинным революционером в микробиологии и эволюционной биологии. Однако, по точному выражению Анны Ахматовой, «когда человек умирает, изменяются его портреты». По крайней мере, для автора этой книги теперь очевидно, что в последней трети XX века Вёзе не было равных среди биологов. Его вклад в науку исключительно велик и разнообразен, и конечно же ни в коей мере не сводится к открытию архей. В этой книге его имя упоминается чаще, чем любое другое: во-первых, в связи с его пионерскими исследованиями по эволюции генетического кода, выполненными еще в 60-х годах прошлого века, затем, разумеется, при обсуждении молекулярной филогении и трех доменов клеточной жизни и, наконец, в контексте его глубоких концептуальных работ рубежа двух тысячелетий.
Рис. 2–3. Трехдоменное древо жизни Вёзе.
Две группы исследователей независимо друг от друга пришли к блестящей идее о том, как определить положение корня в эволюционном дереве, которое до этого было бескорневым (рис. 2–3). Для этой цели можно использовать древние паралоги, которые представлены в (почти) всех организмах и, таким образом, можно с уверенностью заключить, возникли в результате дупликации, предшествующей последнему общему предку всех живых организмов (LUCA). Когда дерево строится совместно для двух паралогичных множеств древних ортологов, положение корня между ними определено однозначно, и таким образом корень может быть выведен для каждого из множеств ортологов (см. рис. 2–4; Gogarten et al., 1989; Iwabe et al., 1989). Результаты анализа двух пар древних паралогов, факторов трансляции и субъединиц мембранных АТФаз были полностью совместимы и поместили корень на бактериальную ветвь, установив таким образом кладу архей-эукариотов (см. рис. 2–4). Тем не менее даже в догеномную эпоху было ясно, что не все деревья белок-кодирующих генов имеют ту же топологию, что и дерево рРНК; причины этих отличий оставались неясными и, как предполагалось, включали (за исключением артефактов метода) горизонтальный перенос генов (ГПГ. Smith et al., 1992). Эти расхождения оставались лишь интересным дополнением к трехдоменному ДЖ, но все резко изменилось с наступлением эры геномики.
Рис. 2–4. Определение положения корня в трехдоменном древе жизни с помощью древних паралогов. Схематически показаны филогенетические деревья двух широко распространенных факторов инициации трансляции EF-Tu и EF-G, реконструированные независимо (верхние диаграммы) и совместно (нижняя диаграмма). Кружками обозначено вычисленное положение корня в каждом из двух деревьев.
Вирусы и рождение эволюционной геномики
Эволюционная геномика родилась более чем за десять лет до исторического заявления о секвенировании первого бактериального генома. С меньшей помпой (но и не в безвестности) было секвенировано несколько небольших (в рамках 4—100 Кб) различных вирусных геномов, и были разработаны принципы сравнения геномов, наряду с практическими вычислительными методами. Вирусы являются облигатными внутриклеточными паразитами, и вирусные геномы намного меньше и качественно отличаются от геномов клеточных форм жизни. Вирусы обычно не лишены некоторых классов генов, вездесущих и незаменимых в клеточных организмах, таких как гены компонентов системы трансляции и биогенеза мембран. Тем не менее вирусы следуют своей собственной «биологической стратегии» и кодируют все субъединицы вириона, а также по крайней мере некоторые белки, участвующие в репликации вирусного генома. (Одна из центральных тем этой книги – ключевая роль вирусов в эволюции биосферы, так что я возвращаюсь к ней достаточно подробно в гл. 10 [27] .) Несмотря на быструю эволюцию последовательности генома, характерную для вирусов (в особенности вирусов с РНК-геномом), эти ранние сравнительные геномные исследования успешно выявили множества генов, консервативных в больших группах вирусов (Koonin and Dolja, 1993). Возможность структурного и функционального картирования всего генома определенной формы жизни была реализована в этих исследованиях впервые, и это стало краеугольным камнем эволюционной геномики. Кроме того, было сделано непредвиденное и важное обобщение: в то время как некоторые гены консервативны для удивительно обширного разнообразия вирусов, архитектура генома, структура вириона и биологические свойства вирусов демонстрируют гораздо большую пластичность (см. гл. 5 и 10, где этот вопрос обсуждается подробнее).
27
Я охотно признаю свое пристрастие к вирусам. Будучи второкурсником МГУ, я выбрал кафедру вирусологии в качестве специализации. Этот выбор был отчасти продиктован посторонними соображениями, такими как очевидный интерес к реальной науке и либеральная атмосфера на этой кафедре, в отличие от некоторых других. Это было важно в то время, и не было ошибкой. Но более фундаментальным побуждением было мое увлечение разнообразием генетических механизмов и организации генома вирусов, что приводит к идее о том, что вирусы могут иметь непосредственное значение для понимания ранних этапов эволюции жизни. Я все еще думаю, что эта идея совершенно верна, как обсуждается в гл. 10 и 11. Все эксперименты, которые я когда-либо провел, относились к области вирусологии; эта работа, хоть сама по себе и несущественная, была чрезвычайно поучительна для всех моих последующих исследований в области вычислительной биологии. Вероятно, еще важнее, что мои первые вылазки в сравнительную геномику, совпавшие по времени с рождением всей этой области исследования, были связаны с вирусными геномами. Эти небольшие геномы были идеальной стартовой площадкой: даже с тогдашними примитивными средствами вычислительной техники (и, конечно, со всем рвением новичка) в общем-то можно было проследить эволюцию каждой аминокислоты в вирусных белках.
Эндосимбиоз
Гипотеза о том, что некоторые органеллы эукариотических клеток, в частности хлоропласты растений, произошли от бактерий, не намного моложе «Происхождения…» Дарвина: некоторые исследователи высказали эту идею в конце XIX века на основе микроскопического исследования клеток растений, показавшего заметное структурное сходство между хлоропластами и цианобактериями (известными тогда как сине-зеленые водоросли). Концепция симбиогенетической эволюции была последовательно представлена Константином Мережковским в начале XX века [28] . Тем не менее в течение первых двух третей ХХ века гипотеза эндосимбиоза оставалась маргинальным теоретизированием. Такое восприятие изменилось вскоре после появления в 1967 году революционной статьи Линн Саган (Маргулис), где она обобщила данные о сходстве органелл и бактерий, и в особенности о совершенно неожиданно открытых незадолго до того геномах и системах трансляции органелл. Саган сделала вывод, что не только хлоропласты, но и митохондрии произошли от эндосимбиотических бактерий (Sagan, 1967). Последующие исследования, и в особенности филогенетический анализ как генов, содержащихся в митохондриальном геноме, так и генов, кодирующих белки, которые функционируют в митохондриях и, видимо, были перенесены из митохондриального в ядерный геном, превратили гипотезу эндосимбиоза в устоявшуюся концепцию с чрезвычайно прочными эмпирическими основаниями (Lang et al., 1999). Кроме того, эти филогенетические исследования убедительно продемонстрировали происхождение митохондрий от определенной группы бактерий, -протеобактерий. Фундаментальная роль в эволюции, которая отводится уникальным (или крайне редким) событиям, таким как эндосимбиоз, не совместима ни с градуализмом, ни с униформизмом, и является одной из основных тем в остальной части этой книги, в частности в главах 7 и 12.
28
Много хуже, чем Фишер или Холдейн, Мережковский публично выступал с чрезвычайно отвратительными взглядами явно фашистского толка. Тем не менее его работы по эндосимбиозу являют собою поразительный пример образцового исследования и по сей день (W. Martin and K. V. Kowallik. Annotated English Translation of Mereschkowsky’s 1905 Paper ‘"Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche‘ // European Journal of Psychology 34 [1999]: 287–296.)
Канализация и устойчивость в эволюции
Выдающийся эволюционный генетик Конрад Уоддингтон выдвинул неортодоксальную идею канализации развития, которая является частью его общей концепции эпигенетического ландшафта [29] . Эпигенетический ландшафт – это отображение решений, принимаемых развивающимся эмбрионом, так что развитие происходит за счет движения вдоль долин, по которым проходят группы сходных траекторий. Таким образом, относительно небольшие возмущения, вызванные либо факторами окружающей среды, либо мутациями, не влияют на развитие, то есть биологические системы существенно устойчивы. Согласно концепции Уоддингтона, эта устойчивость является эволюционировавшим, адаптивным свойством биологических систем. Внешнее давление может нарушить канализацию и обнаружить скрытую изменчивость, увеличивая тем самым эволюционный потенциал популяции (Waddington and Robertson, 1966). Во времена Уоддингтона эти идеи были за пределами главного русла эволюционной биологии, но в новой концепции эволюции надежность и эволюционный потенциал занимают центральное место, как обсуждается в главе 9.
29
Обратите здесь внимание на сходство с адаптивным ландшафтом Райта. Насколько я знаю, это две независимые сошедшиеся вместе идеи.
Краткий обзор и перспектива
Вскоре после того, как была создана СТЭ, в эволюционной биологии произошли разительные перемены: эволюцию стало возможно проследить непосредственно к ее основе, эволюционирующему геному. На самом глубоком концептуальном уровне эволюция путем естественного отбора и дрейфа является неизбежным следствием подверженной ошибкам репликации генетической информации, кодируемой по цифровому принципу. Эволюция перестала быть несколько абстрактным процессом накопления мутаций, наблюдаемых лишь косвенно через их фенотипический эффект. Напротив, эволюция в настоящее время рассматривается как накопление конкретных изменений различного рода, больших и малых, выявляемых прямым сравнением все более доступных генных и геномных последовательностей. Наличие градиента дивергенции последовательностей от близкородственных к далеким видам само по себе является лучшим доказательством эволюции. Эта тенденция воплощается в теории (почти) нейтральной молекулярной эволюции и, на более практическом уровне, позволяет строить осмысленные филогенетические деревья. Молекулярная филогенетика достигла высшей точки с построением трехдоменного древа жизни, первоначально обнаруженного через филогении рРНК, а затем поддержанного филогениями многих белков. Анализ древних паралогов поместил корень на бактериальную ветвь трехдоменного ДЖ. Тем не менее первые выявленные расхождения между топологиями деревьев отдельных генов подсказали, что дерево рРНК не сможет рассказать всей истории эволюции жизни.
Сравнение первых секвенированных геномных последовательностей небольших вирусов положило начало эволюционной геномике. Стало ясно, что с помощью сравнительного анализа могут быть построены структурные и функциональные карты геномов, которые нельзя было охарактеризовать никаким иным способом, и что поразительная консервативность ключевых генов идет рука об руку с пластичностью архитектуры генома.
Одновременно с завершением развития СТЭ на заре молекулярной эволюции и молекулярной филогенетики эволюционная биология догеномной эпохи включала несколько концепций, таких как пандативы и канализация, выходящих за рамки неодарвинизма. В результате быстрый расцвет геномики в 1990-х годах происходил на фоне сложного, разнообразного ландшафта эволюционной теории и методологии.