Шрифт:
Исследование сцеплений генов
При исследовании сцеплений ставится задача идентифицировать локус гена на хромосомах, изучая частоту совместного выделения его с геном-«маркером». Генетические маркеры — это легкоидентифицируемые признаки с известным единым способом наследственной передачи и с двумя или более общими аллелями (альтернативные гены). К ним относятся группы крови, антигены лейкоцитов человека (HLA) и определенные физиологические аномалии (например, цветовая слепота). Для того чтобы определить, до какой степени два гена «слипаются» вместе (вопреки закону Менделя о независимом расхождении генов в мейозе), изучают генеалогии больших семей. На основании полученных данных можно, применяя соответствующие математические методы, приблизительно оценить, насколько тесно генные локусы сцеплены на хромосоме. Неоднократно подобные методы исследований применялись и к психическим расстройствам, но выявить сцепление с маркером пока не удалось.
Исследования сцеплений дают наилучший эффект, если известен способ наследования расстройства и если оно обладает высокой пенетрантностью (т. е. почти у всех носителей соответствующего гена развивается данное расстройство). Ни шизофрения, ни аффективные расстройства не принадлежат к этому типу, и ценность исследований сцепления, по-видимому, ограничена. Пока что этот метод удалось успешно применить только к одному из расстройств, представляющих интерес для психиатров, а именно к хорее Гентингтона ( см. ) — состоянию, вызываемому доминантным геном с полной пенетрантностью (при условии, что объекты исследования наблюдаются до достаточного возраста). Как уже упоминалось, новейшие достижения в молекулярной генетике, вероятно, в значительной мере расширят возможности анализа сцеплений генов.
Цитогенетические исследования
Цитогенетические исследования посвящены идентификации структурных аномалий в хромосомах и изучению их связи с болезнью. В психиатрии наиболее важные примеры относятся к синдрому Дауна (монголизм). Существует два варианта этой патологии: при первом имеется дополнительная хромосома (трисомия); при втором количество хромосом нормально, но одна хромосома необычно велика, потому что к ней прикреплен сегмент другой хромосомы (транслокация) (см. подраздел об этиологии синдрома Дауна в гл.21). Другие примеры связаны с X- и Y-хромосомами. При синдроме Тернера вместо пары половых хромосом имеется только одна (Х0), тогда как при трех других синдромах присутствует еще одна добавочная — XXY (синдром Клайнфелтера), XXX и XYY.
Молекулярная генетика
Вероятно, достижения клеточной и молекулярной биологии внесут свой вклад в познание этиологии психических расстройств. Эти достижения основаны на новых методах исследования. Первое — это открытие так называемых рестрикцирующих эндонуклеаз — бактериальных энзимов, которые разрезают ДНК на фрагменты с определенными нуклеотидными последовательностями. Вторым достижением стала разработка методики репродуцирования фрагментов человеческой ДНК введением их в бактериальные плазмиды (небольшие кольцевые молекулы ДНК в бактериях) с последующим побуждением бактерий к репродуцированию. Методика такого рода используется для создания библиотек геномов, т. е. бактериальных культур, содержащих почти целиком человеческий геном. Третьим достижением является конструирование генных зондов, т. е. коротких одноцепочных последовательностей ДНК, либо на базе генома, либо скопированных с матричных РНК. Копии получают с помощью энзимов из онкогенных вирусов, меняющих последовательность, в которой РНК считывается с ДНК, на обратную. Можно, внедряя радиоактивные основания в короткие последовательности ДНК, обеспечить таким образом возможность идентификации последних, а поскольку нуклеотидные последовательности ДНК сцепляются с себе подобными, такой радиоактивный фрагмент может использоваться для поиска и служить меткой специфической основной последовательности нуклеотидов в смесях ДНК, разделяемых посредством электрофореза. Эта процедура называется генным картированием.
Описанные новые методики можно применять несколькими способами. Существует много безвредных изменений исходных последовательностей человеческой ДНК. Эти вариации могут либо приводить к возникновению новых мест для воздействия рестрикцирующих эндонуклеаз, либо удалять существующие. Изменяя места, в которых энзимы рассекают ДНК, вариации ведут к изменениям длины отсеченных фрагментов, поэтому такие безвредные вариации в исходной последовательности нуклеотидов называют полиморфизмом длины фрагментов, получаемых в результате рестрикции. Так как они разбросаны по всему человеческому геному, их удобно использовать в качестве маркеров для изучения сцеплений генов, а если бы удалось идентифицировать (по приблизительным оценкам) две-три сотни фрагментов, это позволило бы получить данные о сцеплении, соответствующем любому наследственному признаку, причем для этого не требовалось бы знать биохимическую основу данного признака (таким образом был локализован ген хореи Гентингтона). Применяя дополнительные технические процедуры, иногда можно выделить специфический ген, ответственный за патологическое состояние.
Технология рестрикцирующих энзимов, кроме того, открыла путь к определению хромосомных делений и перегруппировок, которые невозможно идентифицировать под микроскопом из-за их чрезвычайно малых размеров. Такие исследования дают возможность углубить знания о причинах психических дефектов.
Другой метод, который может оказаться особенно перспективным в психиатрии, — это выделение информационных РНК, которые представлены только в нервной системе. С их помощью можно идентифицировать не только продукты деятельности генов, но и сами эти гены — своего рода обратная генетика. Некоторые гены, ответственные за регулирующие функции в пределах нервной системы, уже клонированы и секвенсированы (т. е. последовательность нуклеотидов в них установлена), включая гены ацетилхолинового рецептора и натриевых каналов.
Генные зонды также используются для поисков вирусной ДНК в мозге больных с дегенеративными поражениями нервной системы, включая болезнь Альцгеймера.
Указанные методы сейчас пока еще неприменимы к полигенным расстройствам, и не исключено, что шизофрения относится именно к этому типу. Однако со временем, вероятно, появится возможность больше узнать об этих расстройствах благодаря использованию новых подходов. С их помощью будут идентифицированы «гены-кандидаты», т. е. гены, которые могут быть вовлечены в патологию мозгового обмена, характерную для данной болезни. Затем будет производиться поиск полиморфизмов длины рестрикционных фрагментов, которые ассоциируются с болезнью, а заключительным этапом станет изучение взаимосвязи между ними. Благодаря подобному методу уже получена информация о патологическом липидном обмене при поражении коронарных артерий. Другие разработки дают основания надеяться на дальнейшее пополнение знаний о контроле над развитием нервной системы и о причинах дефектов развития. Обстоятельный и глубокий обзор этой сложной и развивающейся области исследования читатель может найти у Weatherall (1986).
Биохимические исследования могут быть направлены либо на причины болезни, либо на механизмы ее проявления. Методы биохимического исследования слишком многочисленны, чтобы их можно было более или менее полно представить на этих страницах; к тому же предполагается, что читатель обладает определенными знаниями по этому вопросу. Основная цель данного раздела заключается в том, чтобы рассмотреть некоторые проблемы, связанные с применением биохимических методов для исследования психических расстройств.