Шрифт:
На взгляд химика, ДНК и белок — весьма сложные молекулы. Для биолога это предельно простая система, поскольку дальнейшее ее упрощение с неизбежностью ведет к потере биологического свойства. Расщепив полимерные молекулы ДНК и белка на мономеры (нуклеотиды и аминокислоты), мы получаем смесь низкомолекулярных соединений, лишенную всякой способности к самовоспроизведению. Вот почему молекулярная генетика имеет дело с макромолекулами. Это справедливо и для других разделов молекулярной биологии — науки, изучающей ту или иную биологическую функцию на уровне макромолекул или их комплексов.
Молекулярная биология — есть биология высокомолекулярных соединений. Не может быть биологии низкомолекулярных веществ. Тем более нельзя говорить о субмолекулярной биологии, квантовой биологии и т. п. Фактически эти термины лишены смысла и лишь вводят в заблуждение.
Но хоть молекулы биополимеров и сложны, они все же индивидуальные химические соединения. Поэтому уровень точности знаний, достигнутый химией, в принципе достижим и в молекулярной биологии. Здесь биология впервые становится действительно точной наукой в самом своем существе.
Нет сомнений, что прорыв биологии на точный молекулярный уровень должен иметь самые важные последствия как для науки, так и для практической деятельности человека. И в общем-то можно понять амбиции молекулярных биологов, рассматривающих изучение каждой из фундаментальных функций живой клетки как самостоятельную научную отрасль, которая имеет право на свое собственное имя.
Любое проявление жизни связано с затратами энергии. Живое существо, пусть даже такое мелкое, как бактерия, — это чрезвычайно сложная и совершенная система, создание которой потребовало миллионы веков эволюционного развития. Чтобы поддерживать существование такой системы, стремящейся перейти в более устойчивое с точки зрения термодинамики неживое состояние, необходим постоянный приток свободной энергии.
Мозг, лишенный доступа кислорода, погибает через несколько минут. В других органах также происходят необратимые изменения при нарушении доставки энергетических ресурсов, хотя этот трагический момент наступает чуть позже, чем в мозге.
Правда, описаны бактерии, все еще сохраняющие нормальную жизнедеятельность в течение нескольких часов после исчерпания внешних источников энергии. Но это уже один из тех рекордов, которые преподносит нам время от времени мир микробов с их поразительной способностью приспосабливаться к неблагоприятным условиям.
Итак, одна из функций, присущих всему живому, — способность к энергообеспечению за счет тех или иных внешних энергетических ресурсов. Как же назвать науку, изучающую энергообеспечение живых существ? Тогда, в Поликьяно, после недолгого спора остановились на биоэнергетике.
(Слово «биоэнергетика» вошло в обиход с легкой руки А. Сцент-Дьердьи, прославившегося в свое время выделением первого витамина — аскорбиновой кислоты. Так называлась небольшая книжка, опубликованная Сцент-Дьердьи в 1956 году. В этом труде можно было, как всегда, найти множество увлекательных мыслей и гипотез, но случилось так, что испытание временем выдержало лишь слово, вынесенное автором на обложку.)
Сначала в некоторых биологических центрах появились группы, лаборатории, отделы биоэнергетики (одним из первых был отдел биоэнергетики в МГУ, созданный в 1965 году). Затем с конца 60-х годов стали издаваться журналы и сборники по биоэнергетике, пошли симпозиумы, конференции, курсы под этим названием. И вот сегодня биоэнергетика — одно из популярных научных направлений со своим кругом идей, объектов и методов, своими лидерами и соперничающими школами, словом, интернациональный организм, живущий и развивающийся по собственным законам.
Вслед за известными успехами этой ветви биологии пришла мода и появилась тенденция писать слово «биоэнергетика» во всех случаях, где речь идет об энергетическом аспекте живых систем, невзирая на степень их сложности. В этом смысле первым биоэнергетиком нужно признать Платона, размышлявшего о судьбе пищи в организме. Что же до современных исследователей, пытающихся добыть точные сведения о биологических преобразователях энергии, то их придется величать «молекулярными биоэнергетиками».
В этих очерках я буду держаться того определения биоэнергетики, о котором мы договорились семнадцать лет назад в Полиньяно, «в час жаркого весеннего заката». Не общие соображения и не внешнее, всегда приблизительное описание превращений энергии в клетке, а точный чертеж биологического трансформатора — вот цель, смысл, «сверхзадача» биоэнергетики. В этой книге я хочу рассказать о том, как биоэнергетики пытаются решить свою сверхзадачу. Речь пойдет об успехах и неудачах молодой науки, о людях, посвятивших себя биоэнергетике, и о путях, которые они выбирают.
Я не могу обещать вам легкого чтения. Если вы взялись за эту книгу, чтобы узнать кое-что о новой науке - биоэнергетике, вам придется иногда напрягать свой интеллект. Моя цель — ввести вас в круг основных идей и сведений о молекулярном механизме одной из важнейших функций живого организма — функции энергообеспечения.
В первой части книги речь пойдет об истории становления биоэнергетики и основных понятиях этой отрасли биологии. Более детальное рассмотрение устройства главных биологических преобразователей энергии — белков — генераторов тока, этих электростанций размером в молекулу, можно найти во второй части.