Вход/Регистрация
Рассказы о биоэнергетике
вернуться

Скулачев Владимир Петрович

Шрифт:

Так в руках Ракера оказалась чистая фракция «грибов». Как показали последующие опыты, «грибы» с большой скоростью расщепляли АТФ до АДФ и фосфата. Более того, добавив «грибы» к обработанным мочевиной мембранам, ученый обнаружил, что на мембране вновь появились грибовидные выросты. При этом возвратилась способность к синтезу АТФ, сопряженному с дыханием.

Определение массы «гриба» показало, что она порядка 385 килодальтон, или в 385 тысяч раз больше массы атома водорода. «Гриб» оказался составленным из нескольких индивидуальных белков с массами от 10 до 55 килодальтон. Еще несколько белков с общей массой порядка 100 килодальтон было обнаружено в мембранной части протонной АТФ-синтетазы. Эти последние нужны для прикрепления «гриба» к мембране и переноса протонов через мембрану. Таким образом, суммарная масса одной молекулы митохондриальной АТФ-синтетазы оказалась чуть меньше 500 килодальтон.

Как же работает этот довольно сложный и внушительный по молекулярным масштабам агрегат?

Рассмотрим сначала реакцию, когда расщепление АТФ ведет к генерации протонного потенциала. Простой опыт показывает, что АТФ взаимодействует первоначально с «грибом», а не с мембранным сектором белкового генератора. Если к митохондриям добавить АТФ, то он не расщепится, пока не пройдет через мембрану и не окажется внутри митохондрии, куда обращены грибовидные выросты.

Ясно также, что гидролиз АТФ происходит в «грибах», поскольку белки мембранного сектора с АТФ не взаимодействуют. Зато они способны к переносу протонов. Эта их активность может быть продемонстрирована, так сказать, в чистом виде на мембранах, лишенных «грибов». Такие мембраны свободно пропускают ионы Н+, причем добавление «грибов» блокирует эту протонную проводимость. Можно нарушить проводимость другим путем — добавлением олигомицина. Кроме того, этот антибиотик прекращает как синтез, так и гидролиз АТФ в исходных мембранах, но не влияет на гидролиз АТФ «грибами», отделенными от мембраны.

По-видимому, мембранные белки АТФ-синтетазы образуют проводящий протоны канал, который связывает «гриб» с противоположной (наружной) стороной мембраны митохондрии. «Гриб», как пробка в графине, закрывает выход из канала на внутренней стороне мембраны. После удаления «гриба» канал становится сквозным, связывая между собой вне- и внутримитохондриальные пространства. Олигомицин нарушает работу канала.

Если «гриб» отделен от мембраны и свободно плавает в воде, то гидролиз АТФ не может привести к созданию протонного потенциала просто из-за отсутствия мембраны, разделяющей пространство на два изолированных отсека.

Если «гриб» прикреплен к мембране и состыкован с каналом, то гидролиз АТФ сопровождается переносом протонов из митохондрии наружу.

Проще всего этот процесс можно представить себе следующим образом. Внутри митохондрий АТФ связывается с «грибом», переносится куда-то в глубь мембраны и там расщепляется на анионы АДФ и фосфата (АДРО- и -ОР):

АДРОР + Н2O -> АДРО- + -ОР + 2Н+, где АТФ обозначен как АДРОР.

Затем ионы Н+ выделяются в канал и выходят наружу, а АДРО- и -ОР переносятся внутрь митохондрии и там связывают протоны:

АДРО- + -ОР + 2Н+внутр.
– > АДРОН + НОР.

Процесс в целом описывается уравнением: АДРОР + 2Н2O + 2Н+внутр.
– > =АДРОН + НОР + 2Н+наружн.

Реакция гидролиза АТФ сопровождается выделением энергии. Поэтому сопряженный с ней перенос ионов Н+ изнутри митохондрий наружу получает возможность идти в энергетически невыгодном направлении, создавая внутри нехватку ионов Н+ и положительных зарядов. Эта нехватка должна возрастать по мере того, как все новые молекулы АТФ гидролизуются митохондрией.

Значит, чем дольше работает АТФазный генератор, тем труднее ему переносить ионы Н+ через мембрану. В конце концов генератор выключится вовсе. Это произойдет в момент, когда выигрыш в энергии от гидролиза уравняется с проигрышем в энергии, сопутствующим переносу ионов Н+ против электрического поля из отсека, где ионы Н+ в дефиците, в отсек, где они в избытке.

Если теперь включить какой-нибудь другой протонный генератор, откачивающий ионы Н+ из митохондрий, например, за счет энергии дыхания, то митохондриям окажется выгоднее впускать внутрь ионы Н+, синтезируя АТФ, чем выталкивать ионы, гидролизуя АТФ. Другими словами, итоговая реакция, приведенная выше, изменит направление и потечет справа налево. Гидролиз АТФ сменится его синтезом, то есть возникнет процесс дыхательного фосфорилирования.

Таковы общие черты устройства протонной АТФ-синтетазы. Однако существенные детали этого механизма все еще остаются неясными, затрудняя выбор между несколькими возможными схемами, призванными описать принцип его работы.

Один из ключевых вопросов — это как, каким способом АТФ, АДФ и фосфат переносятся из водной фазы митохондрии в гидрофобную фазу митохондриальной мембраны, чтобы попасть в сферу действия электрического поля?

АТФ, АДФ и фосфат — это весьма гидрофильные многозарядные анионы. Их сродство к воде очень велико, а к липиду — ничтожно. Чтобы помочь этим веществам перейти из воды внутрь мембраны, необходимо какое-то специальное приспособление. Что бы это могло быть?

Помня, каким скользким может быть путь аналогий, мы тем не менее рискнем обратиться к другой белковой системе, также присутствующей в митохондриальной мембране и имеющей дело с АТФ и АДФ. Я имею в виду так называемый АТФ/АДФ-антипортер.

М. Клингенбергом был получен в чистом виде и подробно исследован мембранный белок массой 30 кило-дальтон, способный обменивать содержащийся в митохондриях АТФ на внемитохондриальный АДФ (этот процесс обозначается термином «антипорт»). Выяснилось, что у антипортера есть два места связывания АТФ и АДФ. Белок закреплен в мембране таким образом, что эти два места обращены в воду по разные стороны мембраны. Если к белку на внутренней поверхности мембраны присоединяется АТФ, а на внешней — АДФ, то молекула белка поворачивается на 180 градусов или совершает какое-то более сложное движение, в результате которого участок белка с АТФ появляется снаружи митохондрии, а участок с АДФ - внутри.

  • Читать дальше
  • 1
  • ...
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: