Шрифт:
Более сложная модификация того же прибора показана на следующем рисунке. Здесь все то же самое, но щелей в маске не одна, а две, и расположены они параллельно друг другу. Электроны проявляют здесь свою волновую природу, и электронные волны, прошедшие сквозь щели, складываются между собой по ту сторону маски. В результате на экране образуется явно выраженная интерференционная картина, представляющая собой чередование темных и светлых полос (рисунок 3). Кроме того, на рисунке (страница 4) показаны кривые, выражающие зависимость интенсивности свечения экрана от расстояния вдоль оси х, проведенной в направлении, перпендикулярном направлению черных и белых полос.
ЧЕРЕЗ КАКУЮ ЩЕЛЬ ПРОШЕЛ ЭЛЕКТРОН!
Со дня, когда подобный опыт был поставлен впервые, и до сих пор ученых интересует все тот же вопрос: можно ли узнать, через какую из двух щелей прошел этот самый единственный электрон?Поскольку в формулировке этого вопроса присутствует слово «узнать», мы также не можем остаться равнодушными. Усложним еще более конструкцию приора, снабдив его источником света, расположенным точно посередине между двумя щелями и двумя детекторами, способными регистрировать каждый отдельным фотон. Будем предполагать, что, если какой-либо электрон пролетит через верхнюю щель, летящий ему навстречу очередной фотон, излученный источником света, от разится от него и попадет в верхний детектор, которым и зарегистрирует его. Мы будем знать, что через верхнюю щель пролетел электрон. Наоборот, если электрон пролетит через нижнюю щель, отраженный от него фотон попадет в нижний детектор. Таким образом, по сигналам детекторов мы, казалось бы, можем точно знать, через какую именно щель пролетел электрон.К сожалению, на самом деле все обстоит не так просто. Многочисленные опыты, в частности, с конструированием различных микроскопов, неоспоримо свидетельствуют о следующем. Можно «увидеть» предмет в том и только в том случае, если, он «освещается» излучением, длина волны которого во всяком случае не больше, чем размеры предмета. При этом совершенно не важно, освещается ли предмет видимым светом, ультрафиолетовым излучением или потоком любых микрочастиц, имеющих, как мы совсем недавно имели возможность напомнить читателю, волновую природу. Не важно также и то, что имеется в виду под словом «увидеть»: увидеть глазом или зарегистрировать детектором.
Наконец, уместно напомнить здесь, что Длина волны любого излучения обратно пропорциональна энергии его квантов: чем выше энергия, тем короче длина волны, причем в качестве коэффициента пропорциональности выступает все та же постоянная Планка. Отсюда следует, в частности, что определить, через какую щель пролетел электрон, можно лишь в том случае, если длина волны света меньше расстояния между щелями. А теперь самое главное!Предположим, что в нашем приборе (см. рисунок на странице 124) мы выбрали источник света с достаточно короткой длиной волны, уж во всяком случае, во много раз короче расстояния между щелями в маске.Включаем такой прибор — и увы! — убеждаемся в том, в чем уже неоднократно убеждались ученые как в результате экспериментальных исследований, так и в результате теоретического анализа: никакой интерференции! Вместо этого мы видим на экране одну световую полосу со слегка размытыми краями. Такая в точности полоса получается, если просто просуммировать светящиеся точки от попадания в экран электронов, прошедших через обе щели.Проделанный опыт однозначно свидетельствует: мы можем узнать, через какую щель прошел электрон, но тогда мы не получим интерференционной картины. Иными словами, электрон, о котором мы знаем, ведет себя принципиально иначе, чем электрон, о котором мы ничего не знаем.Будем теперь плавно увеличивать длину волны источника света. В тот момент, когда длина волны окажется сравнимой с расстоянием между щелями в маске, на экране восстановится интерференционная картина, однако теперь мы уже не сможем узнать, через какую щель прошел каждый данный электрон. Можно выбрать и такую длину волны, когда интерференционная картина уже начинает прорисовываться. Длина волны света еще достаточно мала, и мы можем приближенно судить о том, через какую щель прошел электрон, и при этом имеем частичную интерференционную картину. Кривая, показывающая зависимость интенсивности свечения экрана от расстояния вдоль оси к, — это кривая Б на рисунке 4.Повторяем еще раз: таковы результаты опыта, который мы проделали мысленно, а многие физики во всем мире проделывали и продолжают проделывать в настоящее время в натуре. Попробуем теперь их осмыслить. Похоже, что одно обстоятельство не должно вызывать сомнений. Количество информации, получаемое нами от электрона, зависит от длины волны источника света, которым мы освещаем электрон и щели. Здесь нужно указать на один очень важный факт. Результаты только что описанного опыта будут оставаться неизменными и в том случае, если убрать детекторы, сохранив лишь источник света.Этот факт свидетельствует в пользу того, что информация, о которой мы говорим, совершенно объективна. Ее необязательно получать, а достаточно иметь. принципиальную возможность ее получения. Количество этой информации зависит от длины волны источника света: чем короче длина световых волн, которыми мы «освещаем» электрон, тем точнее мы можем определить местоположение электрона, тем, соответственно, больше сведений (информации) мы принципиально можем о нем иметь.В. Гейзенберг сформулировал свой знаменитый принцип неточностей в 1927 году. В одной из статей, посвященных этому вопросу, он писал: «Если мы хотим уяснить, что следует понимать под словами «положение объекта», например электрона, необходимо указать определенные эксперименты, при помощи которых намереваются определить «положение электрона» и даже с какой угодно точностью. Например, мы освещаем электрон и рассматриваем его в микроскоп. При таком способе максимально достижимая точность определения положения в основном задается длиной волны используемого света. Но в принципе можно построить, например, гамма-лучевой микроскоп и с его помощью определить положение с желаемой точностью. Однако в этом измерении существенно побочное обстоятельство -эффект Комптона… В мгновение, когда определяется положение, иначе говоря, в мгновение, когда квант света отклоняется электроном, последний прерывно изменяет свой импульс. Это изменение тем сильнее, чем меньше длина волны используемого света, иначе говоря, чем выше точность определения положения. Поэтому в то мгновение, когда известно положение электрона, импульс может быть определен лишь с точностью до величин, соответствующих такому прерывному изменению; итак, чем точнее определяется положение, тем менее точно известен импульс, и наоборот».
ЧТО ТАКОЕ ФИЗИЧЕСКАЯ ВЕЛИЧИНА!
Описанный опыт позволяет поставить вопрос: в каких единицах мы можем теперь измерять информацию?Вернемся еще раз к обсуждению того, что такое физическая величина. Мы говорили, что определить понятие физической величины — это значит задать способ се измерения. Способ должен быть таким, чтобы одна и та же измерительная процедура давала бы одно и то же значение физической величины, независимо от того, в каких условиях эти измерения проводятся.Описанный опыт позволяет поставить вопрос: в каких единицах мы можем теперь измерять информацию?Вернемся еще раз к обсуждению того, что такое физическая величина. Мы говорили, что определить понятие физической величины — это значит задать способ се измерения. Способ должен быть таким, чтобы одна и та же измерительная процедура давала бы одно и то же значение физической величины, независимо от того, в каких условиях эти измерения проводятся.Можно сказать и больше: измерение — это всегда сравнение с эталоном. Причем в подавляющем большинстве случаев эталон имеет другую природу, нежели измеряемая величина. Так, приводя пример с силой тока, мы говорили, что ток силой в один ампер — это такой ток, который, проходя через раствор азотнокислого серебра, в течение одной секунды выделяет 1,118 миллиграмма металлического серебра. В данном случае эталоном для сравнения явилась гиря в 0,001 миллиграмма. Однако по-прежнему должно быть справедливым утверждение, что ток силой в один ампер всегда и при любых условиях при прохождении через раствор азотнокислого серебра в течение одной секунды будет сопровождаться выделением одного и того же количества серебра1.Но ведь ясно и другое. Ток силой в один ампер совсем необязательно пропускать именно через раствор азотнокислого серебра. Можно выбрать раствор другого какого-либо вещества, и при этом все будет тем же самым с единственным исключением, что количество выделившегося на электроде вещества в общем случае будет уже другим. Наконец, можно пропускать ток не через раствор, а, как это делается в большинстве амперметров, через подвижную катушку, находящуюся в магнитном поле. Тогда в качестве эталона будет выступать величина угла поворота катушки.Сказанное приводит нас к выводу, что, определяя физическую величину, мы можем задавать различные способы измерения и получать, вообще говоря, различные численные значения. И для того чтобы данная величина могла претендовать на ранг физической величины, необходимо лишь, чтобы различные значения, получаемые в измерениях различными способами, оказывались связанными между собой соответствующими физическими законами. Это справедливо и для информации. Объективность понятия информации ни в коей степени не будет уменьшена, если мы предложим другой способ измерений и соответственно будем получать в результате этих измерений другие численные значения количества информации.
КАРМАН ДЛЯ ЭЛЕКТРОНОВ
А теперь обратимся к рисунку на странице 123. Как уже говорилось, кривые на рисунке показывают зависимости интенсивности свечения экрана от расстояния вдоль оси х. Но интенсивность свечения экрана, в свою очередь, пропорциональна среднему количеству электронов, падающих на единицу площади поверхности экрана в единицу времени. Каждый электрон несет с собой определенное количество энергии, которое и затрачивается на возбуждение атомов экрана. Затем эти атомы возвращаются в основное состояние, излучая при этом квант света. Следовательно, можно считать, что наши кривые показывают также зависимость от расстояния вдоль оси х средней плотности энергии, сообщаемой экрану.Обратите внимание на часть рисунка, выделенную двумя горизонтальными линиями. Предположим; что мы наблюдаем за определенной областью экрана, ограниченной двумя линиями, перпендикулярными оси х. Можно считать, что в этой области экрана сделан специальный «карман», улавливающий электроны.При Одной и той же интенсивности исходного пучка электронов среднее количество электронов, падающих на выделенную область в единицу времени, или, что то же самое, среднее количество энергии, воспринимаемой «карманом», опять-таки в единицу времени, существенным образом зависит от того, имеем ли мы дело с кривой А или с кривой Б. (Напомним, что кривая А имеет место в том случае, когда мы ничего не знаем о местоположении электрона, а кривая Б — в том случае, когда местоположение электрона фиксируется с точностью до размеров щели.)Вот почему при описании опыта со щелями мы придавали такое большое значение тому, есть ли на экране интерференционная картина. Из сравнения кривых А и Б, которые получены при одной и той же интенсивности электронного пучка, мы не можем не прийти к выводу: количество электронов, попавших в «карман», зависит от того, имеем ли мы информацию о положении электрона или нет. При расположении «кармана», показанном на нашем рисунке, в него попадает больше электронов и, следовательно, больше энергии в случае, когда имеет место кривая Б, то есть когда мы принципиально можем располагать информацией о положении электрона.Можно так переместить «карман» вдоль оси х, что количество получаемой им энергии будет, наоборот, уменьшаться при увеличении количества информации о положении электрона. Но ясно одно: количество энергии, получаемой «карманом», зависит от того количества информации, которое мы принципиально можем получить о положении электрона. А коли так, значит, разность количеств энергии, получаемых «карманом» в случаях, характеризуемых кривыми А и Б на нашем рисунке, можно использовать как меру количества информации, которую принципиально можно получить и которой, следовательно, располагают сами электроны.Разность количеств энергии очень легко измерить, а можно поступить и еще проще. Можно заменить соответствующую область светящегося экрана металлической пластинкой, как показано на рисунке на странице 131. Тогда электроны, попадающие на металлическую пластинку, создадут в ее цепи электрический ток, причем сила этого тока будет попросту равна величине заряда одного электрона, умноженной на количество электронов, попадающих на пластинку в единицу времени. Силу тока можно измерять амперметром, а разность показаний амперметра и даст нам величину, пропорциональную количеству информации. На практике количество информации измеряют в битах. Один бит — это такое количество информации, которое получается при осуществлении выбора между двумя равными возможностями.
НУ А ЭНТРОПИЯ!
Нужно ли при подсчете или измерении количества информации вводить промежуточную величину— энтропию? Этот вопрос был поставлен нами раньше, и настала пора разобраться с ним до конца.Ясно, что применительно к такой системе, как атом, понятие статистического веса не имеет смысла и мы можем вводить понятие энтропии, определив его лишь как логарифм вероятности состояния. Следовательно, вопрос о целесообразности введения энтропии сводится к вопросу о целесообразности введения вероятностных описаний процессов.Надо сказать, что сами физики очень охотно пользуются понятием вероятности. Это происходит потому, что таким образом они получают возможность использовать в своей работе весьма простой и эффективный математический аппарат теории вероятностей. Профессионала физика интересует главным образом количественное описание явлений, а не объяснение, почему то или иное явление происходит. По словам М. Борна, «в классической физике логическая обработка какой-либо области лишь тогда признается законченной, когда она сведена к одной из глав «нормальной» математики». В частности, в учебниках по физике опыты с прохождением электронов через щели также описываются с привлечением понятия вероятности. Предлагаемые математические описания позволяют определить, вероятность для электрона .пройти через ту или иную щель. Давайте, однако, выясним для себя до конца, что это значит. Что означает утверждение, что в описанном выше опыте электрон проходит через верхнюю щель с вероятностью, например, 0,6, а через нижнюю — с вероятностью 0,4? Только то, что если источник испустит, например, миллиард электронов, то почти точно 600 миллионов из них (эта величина от раза к разу, вообще говоря, будет изменяться) пройдут через верхнюю щель, а 400 миллионов, соответственно, через нижнюю. Но мы установили, что интерференционная картина возникает при прохождении одного-единственного электрона. Все остальные электроны лишь увеличивают яркость свечения экрана, ничего не меняя по существу. Применительно же к одному электрону совершенно бессмысленно говорить о вероятности.И наконец, последнее. Привлекая понятие энтропии, мы должны привлекать одновременно связанное с этим понятием второе начало термодинамики. В то же время как раз для таких систем, как атом, совершенно не наблюдается тенденции к увеличению энтропии. Наоборот, если с атомами что и происходило за все время существования нашей вселенной, так это постепенное их усложнение начиная с «первичного взрыва». Усложнение — значит уменьшение энтропии.Удобнее всего определять количество информации той или иной системы непосредственно через тот эффект, который эта информация производит. Пока что во всех наших примерах таким эффектом было совершение механической работы или другие проявления энергии. Именно информация является объективной характеристикой явления. С позиций информации можно объяснить, почему данное явление происходит так, а не иначе. В случаях же, когда по тем или иным соображениям нас будет интересовать вероятностная характеристика явления, соответствующую вероятность можно вычислить на основе известного количества информации.Сказав эту фразу, мы проявили тем самым наше полное согласие с А. Эйнштейном в том, что случайность и вероятность как мера этой случайности есть всего лишь мера незнания, понимаемого в широком смысле.
«УЧЕНЫЕ» ЭЛЕКТРОНЫ
При желании можно было бы рассмотреть еще большое количество опытов с электронами, но уже ясно, о чем они свидетельствуют: электроны и другие элементарные частицы представляют собой физические объекты, обладающие высокой степенью информированности. Иными словами, качество энергии электрона очень высоко. Свою информацию электрон может использовать в процессе перехода атома из одного состояния в другое, в процессе взаимодействия с веществом, частным случаем которого является рассмотренный выше случай с прохождением через щели, в процессе взаимодействия с окружающим пространством и во многих других процессах.Мы еще столкнемся с некоторыми примерами использования информации электронов.Можно отнять у электрона часть информации, и тогда качество его энергии соответственно снизится. В частности, это проявится в том, что вместо четкой интерференционной картины мы увидим лишь одну световую полосу с размытыми краями. Переходя из возбужденного состояния в основное, электрон в атоме сам испустит квант электромагнитного излучения. Этот квант унесет с собой из электрона информацию о только что происшедшем там процессе. Тогда количество информации электрона уменьшится, и качество энергии электрона, а еще правильнее сказать, качество энергии атома, находящегося в основном состоянии, станет ниже, чем качество энергии атома, находящегося в возбужденном состоянии. Следовательно, атом, находящийся в основном состоянии, не способен совершить механическую работу по испусканию кванта излучения, он не способен также передать информацию.У читателя может возникнуть естественный вопрос: а не усложняем ли мы физическую картину явлений?Начиная с первых страниц книги мы последовательно проводим ту мысль (сейчас это стало достаточно ясным), что наиболее естественной мерой количества информации должна служить энергия. Но может быть, все гораздо проще? Может быть, никакой физической величины информации не существует, а все явления, которые мы рассматриваем здесь в качестве примеров, могут быть описаны в терминах одной лишь энергии?Ответ на такой вопрос может быть только отрицательным. Уже в термодинамических системах мы столкнулись с таким понятием, как статистический вес, не имеющим ничего общего с энергией. Физическая система может обладать определенным сколь угодно большим запасом энергии и в то же время быть неспособной совершить механическую работу, если ее статистический вес (энтропия) имеет максимальное значение, а информация, следовательно, равна нулю. С другой стороны, такая же точно физическая система, обладающая таким же точно запасом энергии, но находящаяся в состоянии с меньшим статистическим весом и, следовательно, располагающая запасом информации, способна совершить подчас достаточно большое количество механической работы.Тогда другой вопрос: может быть, для описания явлений достаточно лишь энтропии и энергии, и информация здесь ни при чем? Ведь предполагали же в свое время, что все физические, а заодно и химические законы можно вывести из первого и второго начал термодинамики!И снова ответ может быть лишь отрицательным. Энтропия, по определению, есть некоторая средняя характеристика, она не вскрывает деталей явления, а лишь учитывает суммарный эффект от множества таких деталей. А в том, что существенны именно детали, можно убедиться хотя бы на следующем простейшем рассуждении.В каждый момент времени любая физическая система находится в одном определенном состоянии. Грубо говоря, чтобы совершать (или не совершать) механическую работу, система (именно сама система, а не наблюдатель) должна знать, сколькими другими способами может быть реализовано то состояние, в котором она находится. Эта же мысль проявляется еще более выпукло применительно к электрону. Два колебания когерентны, когда они имеют одну и ту же частоту и одну и ту же фазу. Но это возможно, когда одно колебание «знает» частоту и фазу другого.На данном этапе рассуждений мы совершенно свободно применяем глагол «знать» к электронам и другим физическим объектам. И делаем это совершенно обоснованно.Все сказанное нами раньше приводит к неизбежному выводу, что информация суть независимая физическая величина и что у явлений окружающего нас мира есть такие черты, которые можно объяснить и описать лишь с привлечением понятия информации. Поэтому, говоря, что электрон «знает», мы считаем, что электрон обладает определенным запасом информации.
НА ВЕНЕРЕ И НА ЗЕМЛЕ
Вы сидите дома, уютно устроившись в кресле. Перед вами на экране телевизора панорама планеты Венера — самая настоящая. Автоматическая межпланетная станция, находясь в совершенно фантастических условиях, передает эту панораму на Землю. Если бы кто-нибудь в середине 30-х или даже 40-х годов нашего века нарисовал перед вами подобную картину, добавив при этом, что вы доживете до того дня, когда она станет реальностью, вы в лучшем случае сочли это шуткой. И вот одно из самых дерзких мечтаний человечества осуществилось.Конечно, трудно удержаться и не заметить, что основное назначение автоматических межпланетных станций «Венера», а также станций, исследующих сейчас окрестности Других планет солнечной системы, — это получение и передача на Землю различных видов информации. Более того, работа межпланетных станций вообще возможна постольку, поскольку они получают с Земли различные управляющие сигналы — опять-таки информацию. Но эта глава посвящена биологии, и мы вспомнили здесь о межпланетных станциях лишь потому, что не так давно осуществилось еще одно чудо, по своему значению не уступающее межпланетным перелетам, — человек научился выполнять хирургические операции на хромосомах, освоил так называемую генную инженерию.При окрашивании клеточного ядра на определенных стадиях деления в клетках крови человека, слюнных желез маленькой плодовой мухи дрозофилы, в делящихся клетках растений хорошо видны небольшие продолговатые тельца. Это хромосомы — носители наследственности и изменчивости организма. В хромосомах содержится генетическая информация, определяющая вид, свойства и функции сложнейшего организма. Число, форма и размеры хромосом строго постоянны для данного организма, хотя значительно меняются от вида к виду.У аскариды, например, всего две хромосомы, у папоротников — до 500, а у некоторых морских микроскопических животных — радиолярий — их число достигает 1600! Хромосомы всегда парные. Поэтому в каждой клетке организма содержится по две хромосомы каждого сорта. Так, среди 46 хромосом человека имеется по две хромосомы каждого из 23 сортов. Эти сходные, или, как их называют, гомологичные хромосомы, тождественны во всех отношениях — не только по величине и форме, но и по содержащимся в них наследственным единицам — генам. Одну из гомологичных хромосом ребенок получает от отца, другую — от матери.Образно выражаясь, гены подобны нанизанным на нитку бусам разной величины, формы и цвета. Но это не более чем сравнение. На самом деле гены — это участки хромосомы, обладающие определенной биохимической функцией и определяющие наследование одного или нескольких признаков, будь то цвет глаз или полос или предрасположенность к некоторым заболеваниям,Гены очень малы. Рассмотреть ген можно лишь с помощью электронного микроскопа при увеличении до 100 тысяч раз. Средняя длина одного гена имеет порядок двух микрометров.Так вот, биологи научились заменять одни гены в хромосомах другими. Более того, имеется принципиальная возможность сконструировать по своему желанию из отдельных генов целую хромосому. Это и есть то, что называют сейчас генной инженерией.