Шрифт:
Продольный разрез двигателя Jumo-004B
1 — входной канал; 2 — бензиновый бак; 3 — масляный бак-радиатор; 4 — корпус конической передачи; 5 — обтекатель; б — пусковой мотор; 7 — центральная коническая передача; 8 — валик привода к вспомогательным агрегатам; 10 — пакет передних подшипников компрессора; 11 — полусферический корпус передних подшипников; 12 — верхняя половина корпуса компрессора; 13 — нижняя половина корпуса компрессора; 14 — ротор компрессора; 15 — стяжной болт; 16 — стальные разрезные кольца; 17 — силовой корпус (суппорт); 18-задний подшипник компрессора; 19 — упорный подшипник турбины; 20 — задний роликовый подшипник турбины; 21- камера сгорания; 22 — кожух (корпус) блока камер сгорания; 23 — кольцевой газовый ресивер; 24 — сопловый направляющий аппарат турбины; 25 — ротор турбины; 26 — вал-рессора; 27 — распорная втулка; 28 — задние масляные откачивающие помпы; 29 — реактивное сопло; 30 — реечный механизм; 31 — регулировочный конус (игла) сопла; 32 — запальная свеча; 33 — каналы для воздуха, охлаждающего сопловый аппарат турбины; 34 — каналы для воздуха, охлаждающего переднюю сторону турбинного диска
Камеры сгорания двигателя, заключенные в блок, изготовлены из мягкой листовой стали и охлаждаются воздухом, выходящим из компрессора.
Внутри каждой камеры установлена жаровая труба, в передней части которой расположен завихритель воздуха. Лопатки завихрителя закручены, угол закрутки равен 70°. В конце жаровой трубы установлен конический стабилизатор факела с полыми охлаждаемыми стойками, поддерживающими круглое донышко. Это донышко, с одной стороны, притормаживает поток, улучшая условия для сгорания топлива, с другой — создает значительное вихреобразование на выходе из жаровой трубы, обеспечивая устойчивость горения и однородность газовоздушной смеси на входе в турбину.
Стабилизатор факела заключен в цилиндрический кожух, являющийся продолжением жаровой трубы. Между кожухом и трубой имеется кольцевая щель, через которую к газам добавляется вторичный (не проходящий через завихритель) воздух.
Задней стороной камеры сгорания стыкуются с газосборником, создающим кольцевой подвод воздуха к сопловому аппарату турбины. В газосборнике обычно происходит догорание топлива, не закончившееся в камерах сгорания.
Турбина двигателя состоит из соплового аппарата с одним рядом неподвижных лопаток, образующих сопла суживающегося сечения, и турбинного диска с лопатками. Лопатки турбинного диска из специальной стали в первых двигателях изготовлялись массивными, неохлаждаемыми, а в последних модификациях — полыми, охлаждаемыми изнутри воздухом. Лопатки соплового аппарата во всех модификациях изготовлялись охлаждаемыми.
Вал турбины и задняя цапфа компрессора соединяются мужду собой польм тонкостенным промежуточным валом (рессорой), посаженным с обоих концов на шлицах.
Вал турбины установлен на двух подшипниках: переднем — роликовым, заднем — шариковым. Эти два подшипника, так же как и подшипник задней цапфы компрессора, запрессованы в силовом суппорте, являющемся основным силовым элементом двигателя. Мощность, развиваемая турбиной на максимальном числе оборотов, равна 3800 л.с. число лопаток соплового аппарата 35; число лопаток турбинного диска 61.
Система воздушного охлаждения двигателя служит для понижения температуры соплового аппарата турбины, турбинного диска с лопатками, реактивного сопла и регулирующей иглы.
Изменение тяги двигателя в зависимости от температуры и давления атмосферного воздуха
Высотная характеристика двигателя
Воздух для охлаждения соплового аппарата (в последних модификациях и лопаток турбинного диска) отбирается за компрессором и, следуя по каналам в силовом суппорте, поступает в полость внутреннего опорного кольца соплового аппарата. Из этой полости воздух проходит внутрь лопаток соплового аппарата, через отверстия в их задней кромке выходит наружу и, смешиваясь с газами, идущими из камеры сгорания, поступает в турбину.
Для охлаждения передней стены турбинного диска воздух отводится из последней ступени компрессора через лабиринтное уплотнение между ротором компрессора и силовым суппортом. Охладив турбинный диск, этот воздух вытекает в зазор между сопловым аппаратом и турбиной и смешивается с основным газовым потоком.
Задняя сторона турбинного диска, стенки реактивного сопла и игла охлаждаются воздухом, отбираемым после четвертой ступени компрессора и подводимым через обтекаемые стойки в средней части реактивного сопла. Выходная часть сопла охлаждается наружным воздухом с помощью специального экрана.
Тяга | 900 кг |
Число оборотов | 8700 об/мин |
Удельный расход топлива | 1,4 кг/кг час |
Расход воздуха | 23 кг/сек |
Степень повышения давления в компрессоре | 3,0–3,2 |
Температура газов в сопле | 630-690 °C |
Основное топливо | керосин +15 % солярного масла |
Пусковое топливо | авиационный бензин |
Вес двигателя | 720 кг |
Максимальный диаметр | 810 мм |
Максимальная длина | 3940 мм |
Турбореактивный двигатель BMW-003
Двигатель BMW-003 был выпущен в 1940–1941 гг.
К концу войны, в 1944 г., этот двигатель уже производился серийно и устанавливался на самолетах Хейнкель Не-162, Арадо Ar-234С.
Двигатель BMW-003 состоит из следующих основных частей: семиступенчатого осевого компрессора, камеры сгорания кольцевого типа, одноступенчатой газовой турбины и реактивного сопла с регулирующей иглой.
Во входном патрубке расположен двухтактный двухцилиндровый пусковой бензиновый мотор, прикрытый обтекателем. Вал пускового мотора соединен с валом компрессора кулачковой муфтой.