Шрифт:
Если вдуматься во все фундаментальные геометрические понятия, необходимые для определения гиперболического пространства, выяснится, что модель Пуанкаре приводит к непротиворечивому определению каждого. Мы можем проверить остальные, но интереснее всего рассмотреть именно постулат параллельности. Гиперболическая версия его, данная в модели Пуанкаре в форме аксиомы Плейфэра, выглядит так:
В плоскости через точку, не лежащую на данной линии Пуанкаре, можно провести множество других линий Пуанкаре, не пересекающих данную.
Рисунок на странице 179 иллюстрирует, как это выглядит.
Модель Пуанкаре для гиперболического пространства — лаборатория, где легко разобраться с кое-какими необычными теоремами и свойствами, которые математики с таким трудом пытались обнаружить. Предположим, например, что надо изобразить прямоугольник, не существующий в неевклидовом пространстве. Начертим для начала линию Пуанкаре в качестве базовой. Затем — еще два отрезка линий Пуанкаре, по одну и ту же сторону от базовой и перпендикулярные ей. Наконец соединим два отрезка третьим так, чтобы он, как и базовая линия, был перпендикулярен этим двум отрезкам. Это невозможно. В мире Пуанкаре не бывает прямоугольников.
Чего же Пуанкаре добился всем этим? Воображение рисует нескольких очкастых математиков Парижского университета: они по окончании семинара о модели Пуанкаре из вежливости аплодируют умнику Анри. Быть может, они даже приглашают Пуанкаре после его лекции на абсент или блинчик, на котором потом рисуют вареньем прямоугольники. Но зачем кому бы то ни было через сто с лишним лет писать книгу обо всем этом? Или вам — умному и очень занятому читателю — разбираться в ней?
Соль шутки вот в чем: модель Пуанкаре — не просто модель гиперболического пространства. Это и есть гиперболическое пространство (в двух измерениях). На языке математики это означает, что ученые доказали: все мыслимые математические описания гиперболической плоскости — изоморфны, или, говоря нашим с вами языком, одинаковы. Если наше пространство гиперболическое, оно поведет себя в точности как модель Пуанкаре (но только в трех измерениях). Перефразируя диснеевскую песенку, он вообще-то мал, этот блин [173] .
173
«It’s a Small World (After All)» — песня Роберта и Ричарда Шерманов, написанная в начале 1960-х гг. для одноименного аттракциона в Диснейленде. — Прим. пер.
Параллельные линии в гиперболическом и евклидовом пространствах
Через пару десятилетий после открытия гиперболического была открыта еще одна разновидность неевклидова пространства — эллиптическое. Оно получается при другом нарушении постулата параллельности: не существует никаких параллельных линий (т. е. все линии на плоскости должны пересекаться). В двух измерениях этот тип пространства был известен и в другом контексте изучен еще греками, а потом и Гауссом — но ни те, ни другой так и не прониклись важностью этого примера эллиптического пространства. Оно и понятно: в пределах евклидовой системы было доказано, что даже с допущениями альтернативных формулировок постулата параллельности эллиптических пространств не существует [174] . В конце концов загвоздка заключалась не в самих эллиптических пространствах, а в аксиоматической структуре Евклида.
174
В начале XVIII века Джероламо Саккери, священник-иезуит и профессор Университета Павии, изучал работы Валлиса и последователя Сабита — Насира ад-Дина. Вдохновленный их трудами, он тоже увлекся освобождением Евклида от всех обвинений. Мы знаем доподлинно, что таково было его намерение, поскольку в год своей смерти, в 1733-м, Саккери опубликовал книгу под названием «Евклид, освобожденный от всех обвинений» («Euclides ab Omni Maevo Vindicatus»). Как и его предшественники, Саккери заблуждался. Но одно ему удалось доказать верно: формулировка постулата параллельности, приводящая к эллиптическому пространству, также приводит к логическому противоречию с другими аксиомами Евклида.
Глава 18. Букашки, звать их «род людской» [175]
Десять лет, начиная с 1816 года [176] , Гаусс провел по большей части вдали от дома — руководил огромной работой по изучению местностей в Германии; ныне мы называем такие работы геодезической съемкой. Перед исследователями стояла задача измерения расстояний между городами и другими точками на местности и создания соответствующих карт. Это упражнение не так просто, как может показаться, — по нескольким причинам.
175
Фраза из американского киномюзикла «Роки Хоррор, кинофильм» (The Rocky Horror Picture Show, 1975, реж. Джим Шэрмен, в российском прокате известен как «Шоу ужасов Роки Хоррора»). — Прим. пер.
176
Подробнее о работах Гаусса в геодезии см.: Dunnington, стр. 118–138.
Первая трудность, которую пришлось преодолевать Гауссу, заключалась в ограниченных возможностях геодезических инструментов. Прямые линии приходилось строить из коротких отрезков, всякий раз — с определенной погрешностью измерения. И погрешности эти очень быстро накапливались. Гаусс с этой неувязкой взялся справляться не как любой нормальный исследователь, вроде автора этой книги, т. е. не стал ожесточенно рвать на себе волосы и время от времени орать на собственных детей, а тем временем по чуть-чуть приращивать точность измерения и затем публиковать результат в таких формулировках, чтобы звучало как можно солиднее. Нет, Гаусс разработал ключевую для современной теории вероятности и статистики идею — теорему, согласно которой случайные погрешности распределяются относительно среднего значения в виде колоколообразной кривой.
Разобравшись с задачей погрешностей, Гаусс взялся за следующую: как собрать двухмерную карту из данных о трехмерном пространстве, в котором поверхности имеют разную высоту и кривизну. Основная трудность заключается в том, что поверхность Земли имеет не ту же геометрию, что евклидова плоскость, — такова математическая версия бытового затруднения, какое испытывает любой родитель, когда-либо пытавшийся завернуть мяч в подарочную бумагу. Если вы как родитель эту проблему преодолеваете, нарезав бумагу маленькими квадратами и обклеив ими мяч, значит, вы применяете Гауссов подход — с поправкой на технические нюансы. Эти самые нюансы Гаусс опубликовал в статье 1827 года. С тех пор вокруг этой статьи образовалось целое отдельное направление математики — дифференциальная геометрия.
Дифференциальная геометрия — теория искривленных поверхности, в которой поверхность описывают методом координат, изобретенных Де картом, после чего анализируют при помощи дифференциального счисления. Вроде вполне частная теория, применимая, допустим, к кофейным чашкам, крыльям самолетов или к вашему носу — но не к устройству нашей Вселенной. У Гаусса было иное мнение. В статье он отразил два своих главных озарения. Перво-наперво заявил, что саму по себе поверхность можно считать пространством. Можно, иными словами, считать пространством поверхность Земли, чем она в бытовом смысле и являлась — до эпохи воздухоплавания, во всяком случае. Вероятно, Блейк не имел всего этого в виду, когда сочинил строку «Увидеть мир в одной песчинке» [177] , но в итоге поэзия сомкнулась с математикой.
177
Пер. С. Степанова. — Прим. пер.