Шрифт:
Вторая часть принципа радиационной имплозии, в основном, связана с исследованиями в моделях радиационной газодинамики процессов отражения и прохождения рентгеновского излучения через слоистые конфигурации различных материалов, часто представляющих собой многоэлементные геометрические фигуры со сложной динамикой. Практическим результатом этих исследований являлось определение количества энергии, поступающей для радиационной имплозии термоядерных модулей. Если на первой стадии основное требование предполагает максимизацию количества энергии рентгеновского излучения, выходящего из первичного модуля, то на второй стадии таким требованием является минимизация потерь энергии.
Третья часть принципа радиационной имплозии связана с исследованиями трансформации энергии рентгеновского излучения в поле давления, обжимающего термоядерный модуль. Это поле является сложным результатом процесса распространения излучения в различных материалах и имеет осесимметричную структуру. Для получения приемлемых результатов сжатия термоядерного модуля необходимо преобразование осесимметричных граничных условий в симметричный характер имплозии. Решение этой задачи требует управления потоками излучения и газодинамическими потоками как высокотемпературной, так и низкотемпературной высокоплотной плазмы, что обеспечивается в рамках 2й-моделей радиационной газодинамики.
Следует отметить, что особенности «граничных условий» таковы, что имплозия термоядерного модуля может быть как относительно устойчивой, так и неустойчивой. Существуют важные практические приложения, когда процессы имеют трехмерный характер, и в этих целях в РФЯЦ-ВНИИЭФ развиты 30-модели радиационной газодинамики.
Основную роль в решении этих проблем играют методы физико-математического моделирования, что определяется особенностями информации, полученной при испытаниях термоядерных зарядов. Крупнейшим экспериментальным результатом явилось определение «зон устойчивости» радиационной имплозии термоядерных модулей, а также определение физических факторов, выводящих за пределы этих зон.
Подчеркнем, что реализация принципа радиационной имплозии представляет собой выдающийся пример того, как фундаментальная научная дисциплина обеспечила проектирование конструкций, в которых переплелись сложнейшие физические процессы, в отношении ключевых параметров которых экспериментальные данные были ограничены. Колоссальные практические достижения, полученные на основе радиационной газодинамики, сделали нас, безусловно, лидерами в этой области, по крайней мере, на одном уровне с исследованиями в США.
13. ПРЕВРАЩЕНИЕ КБ-11 В МНОГОПРОФИЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР СТРАНЫ
Первая серия атомных зарядов типа РДС-1 в количестве 5 единиц была заложена на хранение в КБ-11 уже в 1950 г. Начало ядерному арсеналу Советского Союза было положено здесь!
Первым атомным оружием подводных лодок стала торпеда Т-5, затем ракета Р-11 ФМ и крылатая ракета. Первой баллистической ракетой с термоядерным зарядом для подводных лодок была Р-13, а с подводным стартом — ракета Р-21. Все эти оружейные комплексы были оснащены зарядами, испытанными и отработанными к тому времени в КБ-11.
В 1953 г. Министерство обороны ставит в ЦК КПСС вопрос о необходимости создания системы противоракетной обороны (ПРО). Специалисты КБ-11 Н.А. Дмитриев, В.Н. Родигин, Д.А. Франк-Каменецкий в 1954 г. показали, что лучший способ защиты от ядерного оружия противника — высотный ядерный взрыв. Зенитная ракета с атомным зарядом (Б.Д. Бондаренко) и автоматикой подрыва (Г.Н. Дмитриев, В.А. Грубов с сотрудниками) разработки КБ-11 была испытана в 1957 г. Компоновка же заряда и автоматики проводилась КБ-25 (Н.Л. Духов, А.А. Бриш с сотрудниками).
В 1954 г. для высшего руководства страны Малышевым, Ванниковым, Хруничевым, Курчатовым, Харитоном и Лаврентьевым был подготовлен документ «Атомное оружие для тактических целей». Фактически этот документ содержал не только обоснование необходимости, но и изложение программы разработки тактических ядерных боеприпасов, включая артиллерийские. Работа в данном направлении реализовалась в 1956 г. проведением успешного испытания на Семипалатинском полигоне. Руководил полигонным испытанием Е.А. Негин.