Вход/Регистрация
Полезная еда. Развенчание мифов о здоровом питании
вернуться

Кэмпбелл Колин

Шрифт:

Но мы по-прежнему ждем рыцаря на белом коне — таблетку, вакцину, технологию, вмешательство, которые спасут нас не только от заболеваний, но и от страха перед болезнями, которые, кажется, бьют вслепую.

Именно (мнимая) случайность пугает больше всего. Я помню, что творилось, когда в возрасте 52 лет от сердечного приступа умер Джим Фикс, автор бестселлера 1977 года о беге[10]. О его смерти сообщали с налетом ироничного фатализма, утверждая, что смерть найдет нас независимо от того, как ревностно мы ведем здоровый образ жизни.

Мы хотим, чтобы наука положила конец случайностям. Мы желаем знать, почему болезни поражают одних, но щадят других. Мы хотим защититься от подстерегающих нас напастей. Короче, исключить непредсказуемость.

Как вы помните, в редукционистской вселенной — простом механическом выражении законов физики — непредсказуемость запрещена и теоретически все известно. Если мы не способны точно предсказать, кто заболеет раком поджелудочной железы или сердечной недостаточностью, то только потому, что пока не собрали достаточно данных, не имеем мощных чувствительных инструментов, чтобы раскрыть кажущиеся тайны. Но не бойтесь: они на подходе! Они почти здесь! К сожалению, они «почти здесь» уже сорок лет.

Генетическое землетрясение

Есть одна дисциплина, которая в последние годы возвысилась над другими. Она призвана решить все проблемы со здоровьем и показать, что мы еще не знали. Речь, конечно, о генетической революции, которая началась на заре 1950-х и продолжается (и привлекает деньги) до сих пор. Вы возразите, что мы живем в Век генетики. Картирование генома человека и отдельных генов — передовой край медицинских технологий. ДНК — основной код, не так ли? В этом фантастически длинном и сложном плане записаны наша биография и судьба. В двойной спирали ДНК — все секреты нашего развития и природы: внешний вид и функции, личность и предрасположенность к заболеваниям. Мощь и скорость компьютеров растут, и мы будем и дальше открывать новые тайны. Вскоре, как утверждала 7 марта 2012 года New York Times, цена секвенирования гена сравняется с ценой простого анализа крови, а это будет иметь «колоссальные последствия для долголетия»2. Стоящие за этим ученые в стартапах Кремниевой долины работают над быстрым и доступным определением секвенции, исходя из предположения, что улучшить здоровье мешает недостаток данных. Типичное отражение этой веры — утверждение Ларри Смарр, директора Калифорнийского института телекоммуникации и информационных технологий и члена научно-консультативного совета Complete Genomics (одного из пионеров генетического секвенирования в Кремниевой долине): «Много веков люди не могли получить данные для программного обеспечения, которое делает их живыми. Если перейти из среды, бедной данными, в богатую таковыми, все изменится»3.

Эти крестоносцы-генетики мнят себя апостолами новой эры просвещения. Редукционистского просвещения. Гены, полагают они, — просто компьютерная программа человека. Хороший программист может прочесть код и предсказать, что сделает программа, а мы способны смотреть на гены и точно понять, чем заболеем и, возможно, даже какие эмоции испытаем.

Проблема в том, что это нереально. Гены говорят нам, что может произойти, но не объясняют, как это произойдет и произойдет ли вообще. Увлечение генетическими технологиями и их финансирование — очередной тупик медицины, кроличья нора редукционизма, которая не приближает нас к профилактике и лечению хронических заболеваний.

Генетическая сложность и редукционизм

Как и диетология, генетика невообразимо сложна, но общество об этом не знает. Многие считают, что гены — относительно стабильные единицы, благодаря которым мы выглядим, функционируем и ведем себя определенным образом. На самом деле все куда интереснее.

Когда я жил на ферме, у нас с братьями, Джеком и Роном, было по комбайну — большой машине, на которой мы ездили по полю и собирали зерно (чтобы помочь отцу заработать на наше образование). В те дни комбайны были так же сложно устроены, как и любая другая машина. Я уже забыл, сколько ремней и блоков в них было, но отлично помню 103 узла, которые требовалось смазывать перед началом работы. Для меня это было чудо инженерной мысли, воплощение упорядоченной сложности. Но тогдашние машины являлись только предвестниками будущих чудес: больших самолетов, огромных океанских лайнеров, телевидения («радио с картинкой»), спутников и космических станций, приборов и систем связи, искусного лабораторного оборудования и, наконец, ПК. Чудесные машины, чудесные умы! Но, как бы ни впечатляла сложность и гармония этих достижений инженерии и техники, они бледнеют перед микрокосмом молекулярной генетики.

Краткий урок генетики

Как вы, может быть, помните из школьных уроков биологии, ДНК — длинная цепь, состоящая из двух параллельных лент, которые слегка свиты и формируют двойную спираль. «Хребет» ДНК образован перемежающимися соединенными между собой молекулами сахаров и фосфатов (рис. 8.1).

Рис. 8.1. Молекула ДНК

Вдоль лент в точной последовательности располагаются содержащие азот основания, каждое из которых прикреплено к дезоксирибозе. Их четыре: аденин (A), тимин (T), гуанин (G) и цитозин (C). Они обращены внутрь молекулы к противолежащим основаниям и связывают ленты друг с другом. Аденин и тимин имеют химическое сродство друг с другом и образуют пары оснований; то же касается гуанина и цитозина.

Молекулы ДНК невообразимо длинны, и последовательности оснований уникальны у всех без исключения людей, когда-либо живших на нашей планете. Поскольку основания — как буквы алфавита, из них складываются «слова», образующие огромный массив информации4.

Уникальная цепочка ДНК разделена и упакована в 23 пары хромосом, расположенных в ядрах всех 100 трлн клеток нашего организма (каждая из которых так мала, что уместилась бы на кончике иглы). Клетки используют ДНК как план работы. Основания пар хромосом (всего около 3 млрд) сгруппированы в гены (их около 25 тыс.). Ген может иметь от 100 до нескольких миллионов оснований и управляет образованием уникального белка.

Однако гены транслируются в белок не непосредственно, а через промежуточное образование — рибонуклеиновые кислоты (РНК), последовательности оснований, отражающие ленту ДНК (рис. 8.2).

Рис. 8.2. Процесс экспрессии ДНК с образованием активного белка (например, фермента)

На заре генетических исследований ученые верили в гипотезу «один ген — один белок»: каждый ген отвечает за экспрессию единственного белка. Если есть 25 тыс. генов, то должно быть 25 тыс. белков. Однако поздние работы ясно показали, что гипотеза слишком упрощена. В частности, для создания одного белка может требоваться более одного гена, так как некоторые белки состоят из нескольких цепочек аминокислот, каждая из которых создается на основе своего гена. Число возможных белков и их комбинаций невозможно оценить, и уже здесь сложность выходит далеко за пределы возможностей человеческого разума.

  • Читать дальше
  • 1
  • ...
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: