Вход/Регистрация
Гиперпространство
вернуться

Каку Митио

Шрифт:

Уже в раннем возрасте Риман демонстрировал присущие ему особенности: поразительный талант к математике в сочетании с робостью и панической боязнью любых публичных выступлений, преследовавшей его на протяжении всей жизни. Болезненно застенчивый, он был мишенью для жестоких насмешек сверстников, что вынуждало его замыкаться в себе, все дальше уходить в свой тайный мир математики.

Вместе с тем Риман был всецело предан семье и не щадил сил и слабого здоровья, чтобы покупать подарки родителям и в особенности — любимым сестрам. На радость отцу Риман решил стать студентом-богословом. Его целью было получить выгодную должность пастора как можно скорее, чтобы помочь родным выбраться из финансовой пропасти. (Трудно представить себе менее вероятное развитие событий: молчаливый, косноязычный, робкий юноша воображал, что сумеет произносить захватывающие, страстные проповеди, обличая грех и изгоняя дьявола.)

В старших классах школы Риман прилежно штудировал Библию, но мыслями неизменно возвращался к математике; он даже пытался математически доказать правильность Книги Бытия. Он учился так быстро, что превосходил познаниями своих наставников, обнаруживших, что угнаться за этим подопечным невозможно. В конце концов директор школы, чтобы хоть чем-то занять юношу, дал ему увесистый фолиант. Это была книга Адриена Мари Лежандра «Опыт теории чисел», внушительный 859-страничный шедевр, на тот момент — наиболее полный из всех существующих в мире трактат, посвященный такому непростому предмету, как теория чисел. Риман проглотил его за шесть дней.

На вопрос директора «Ну как, много уже прочел?», юный Риман ответил: «Это поистине удивительная книга. Я одолел ее всю». Директор счел эти слова бравадой и спустя несколько месяцев задал хвастливому юнцу несколько сложных вопросов по книге, на которые Риман ответил блестяще [10] .

Изнуренный каждодневными поисками пропитания, отец мог бы отправить Римана работать. Однако пастор сумел скопить сумму, достаточную для поступления его 19-летнего сына в знаменитый Гёттингенский университет, где тот познакомился с Карлом Фридрихом Гауссом, признанным «королем математиков», одним из величайших математиков того времени. Даже сегодня в ответ на просьбу перечислить трех наиболее выдающихся математиков в истории любой математик назовет Архимеда, Исаака Ньютона и Карла Гаусса.

10

Э. Т. Белл «Математики» (E. T. Bell, Men of Mathematics, New York: Simon and Schuster, 1937), c. 487. Скорее всего, именно этот случай пробудил ранний интерес Римана к теории чисел. Много лет спустя он высказал знаменитое предположение касательно содержащей дзета-функцию формулы в теории чисел. За сто лет безуспешных сражений с «римановой гипотезой» величайшие математики мира так и не сумели доказать ее. Даже самые современные компьютеры не справились с этой задачей, и гипотеза Римана вошла в историю как одна из самых известных недоказанных теорем в теории чисел — вероятно, самая знаменитая в математике. Белл отмечает: «Тот, кто докажет или опровергнет ее, несомненно, прославится» (там же, с. 488).

В целом жизнь Римана была непрерывной чередой препятствий и бед, преодолевать которые удавалось с огромным трудом и напряжением и без того небольших сил. За каждым триумфом следовали фиаско и трагедия. Едва фортуна улыбнулась ему и он приступил к учебе у Гаусса, как Германию захлестнула волна революции. Рабочий класс, долго терпевший нечеловеческие условия жизни и труда, восстал против правительства, рабочие городов по всей Германии взялись за оружие. Эти демонстрации и волнения начала 1848 г. стали источником вдохновения для еще одного известного гражданина Германии — Карла Маркса и оказали заметное влияние на развитие революционного движения в Европе в последующие годы.

Когда волнения охватили всю Германию, учеба Римана прервалась. Его зачислили в студенческий отряд, где он удостоился сомнительной чести в течение 16 утомительных часов охранять особу, напуганную гораздо сильнее ее охранников, — короля, который трясся от страха в своем берлинском дворце, пытаясь укрыться от гнева рабочего класса.

За рамками евклидовой геометрии

Революционные бури бушевали не только в Германии, но и в сфере математики. Вопросом, которым заинтересовался Риман, стало неизбежное падение еще одного бастиона, авторитет которого ранее был непререкаем, — евклидовой геометрии, рассматривающей пространство как трехмерное. Более того, это пространство не только трехмерное, но и «плоское» (на плоскости кратчайшее расстояние между двумя точками — прямая; исключается сама возможность, что пространство может быть изогнутым, как в случае со сферой).

Пожалуй, евклидовы «Начала» можно назвать наиболее влиятельной (после Библии) книгой всех времен. На протяжении двух тысячелетий проницательнейшие умы западной цивилизации восхищались ясностью мысли и красотой геометрических построений. Тысячи прекрасных соборов Европы были воздвигнуты согласно принципам этой книги. Оглядываясь назад, можно отметить, что успех «Начал» был чересчур велик. С течением веков она стала своего рода религией; к каждому, кто осмеливался предложить искривленное пространство или многомерность, относились как к безумцу или еретику. Бесчисленные множества поколений школьников сражались с теоремами евклидовой геометрии: длина окружности в раз превосходит ее диаметр, сумма углов треугольника составляет 180°. Но как ни бились веками самые светлые умы математики, им не удавалось найти доказательства обманчиво простых постулатов. В конце концов до европейских математиков начало доходить, что даже евклидовым «Началам», чтимым на протяжении 2300 лет, недостает полноты. Евклидова геометрия по-прежнему приемлема, если речь идет о плоских поверхностях, но в мире изогнутых поверхностей она неверна.

С точки зрения Римана, евклидова геометрия особенно бесплодна, если ее сравнить с поразительным многообразием мира. Нигде в природе мы не встречаем плоских, идеальных геометрических фигур Евклида. Горные цепи, океанские волны, облака, водовороты — отнюдь не правильные круги, треугольники и квадраты, а объекты с криволинейными поверхностями, количество изгибов которых поражает бесконечным разнообразием.

Время для революции наступило. Но кто возглавит ее и что придет на смену прежней геометрии?

Появление римановой геометрии

Риман восставал против мнимой математической точности греческой геометрии, фундамент которой, как он обнаружил, покоится на зыбучих песках интуиции и здравого смысла, а не на твердой почве логики.

Согласно Евклиду, у точки вообще нет измерения. У линии одно измерение — длина. У плоскости — два: длина и ширина. У тела — три: длина, ширина и высота. На этом все и заканчивается. Нет ничего, что имело бы четыре измерения. Эти утверждения эхом повторял философ Аристотель, вероятно, первым в мире категорически заявивший, что четвертое пространственное измерение невозможно. В трактате «О небе» он писал: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и, кроме них, нет никакой другой величины, так как три суть все». Более того, в 150 г. н. э. астроном Птолемей из Александрии пошел дальше Аристотеля и в своем труде «О расстояниях» предложил первое оригинальное «доказательство» невозможности четвертого измерения.

  • Читать дальше
  • 1
  • ...
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: