Шрифт:
Однако согласно квантовой теории в наше первое приближение следует внести небольшие поправки. Чтобы сделать наши вычисления строгими, надо также добавить к диаграммам Фейнмана все возможные линии, в том числе с «петлями» на них, как на рис. 5.2, б. В идеале эти квантовые поправки должны быть совсем маленькими. Ведь как мы уже упоминали, квантовая теория для того и предназначена, чтобы вносить крохотные квантовые поправки в ньютонову физику. Но, к ужасу ученых, эти квантовые поправки, или «петлевые линии», оказались не маленькими, а бесконечными. Как ни мудрили физики над своими формулами, как ни пытались замаскировать эти бесконечные величины, расхождения упорно обнаруживались при любых вычислениях квантовых поправок.
Более того, поле Янга-Миллса приобрело устрашающую репутацию метода, головоломно усложняющего расчеты — в сравнении с более простым полем Максвелла. Согласно мифам, с которыми ассоциируется поле Янга-Миллса, для практических вычислений оно совершенно не подходит ввиду своей сложности. Вероятно, ’т Хоофту просто повезло: будучи аспирантом, он еще не успел заразиться предубеждениями маститых физиков. Пользуясь методами, которые первым описал его научный руководитель Мартинус Велтман, ’т Хоофт доказал: всякий раз, когда мы сталкиваемся с «нарушением симметрии» (о нем мы поговорим далее), поле Янга-Миллса приобретает массу, но остается конечной теорией, ’т Хоофт продемонстрировал, что благодаря графам с петлями можно не рассматривать бесконечности или нивелировать их влияние.
Почти через 20 лет после того, как поле Янга-Миллса было предложено авторами, Хоофт наконец доказал, что оно является корректной и однозначной теорией взаимодействия частиц. Известие о работе ’т Хоофта распространилось молниеносно. Нобелевский лауреат Шелдон Глэшоу вспоминает, что он, услышав эту новость, воскликнул: «Либо этот парень полный кретин, либо величайший гений, появившийся в физике впервые за много лет!» [54] Дальнейшее развитие событий было стремительным. Быстро выяснилось, что верна более ранняя теория слабого взаимодействия, предложенная в 1967 г. Стивеном Вайнбергом и Абдусом Саламом. К середине 1970-х гг. поле Янга-Миллса было применено к сильному взаимодействию. Тогда же, в 1970-х гг., к физикам пришло ошеломляющее понимание, что поле Янга-Миллса может оказаться ключом к тайнам всей ядерной материи.
54
Процитировано в: Криз и Манн «Второе сотворение» (R. P. Crease and С. С. Mann, The Second Creation, New York: Macmillan, 1986), c. 326.
Таким оказался недостающий элемент головоломки. Секрет «дерева», связующий воедино материю, — не геометрия Эйнштейна, а поле Янга-Миллса. По-видимому, именно оно, а не геометрия, представляло собой главный урок физики.
Стандартная модель
Сегодня поле Янга-Миллса открыло возможность всеобъемлющей теории материи. Мы настолько уверены в этой теории, что ласково называем ее Стандартной моделью.
Стандартная модель способна объяснить все экспериментальные данные, касающиеся субатомных частиц с энергией вплоть до 1 ТэВ (энергией, возникающей при ускорении электрона в поле, созданном разностью потенциалов в триллион вольт). Это почти предел для ускорителей, существующих в настоящее время [55] . Следовательно, можно без преувеличения сказать, что Стандартная модель — самая удачная теория в истории науки.
55
До запуска Большого адронного коллайдера. — Прим. науч. ред.
Согласно Стандартной модели каждое взаимодействие, связывающее различные частицы, создается при обмене различными видами квантов. Сейчас мы рассмотрим силы по отдельности, а затем объединим их в Стандартную модель.
Сильное взаимодействие
Стандартная модель гласит, что протоны, нейтроны и другие тяжелые частицы вовсе не являются элементарными, а состоят из других, еще более малых частиц — кварков.В свою очередь, кварки различают по трем «цветам» и шести «ароматам» (эти термины не имеют никакого отношения к цветам и ароматам в привычном понимании этих слов). Существуют также аналоги кварков, характерные для антиматерии, — антикварки. (Антиматерия идентична материи во всех отношениях, но имеет противоположные заряды и аннигилирует при соприкосновении с обычной материей.) Таким образом, получаем 3x6x2 = 36 кварков.
В свою очередь, кварки удерживаются вместе благодаря обмену небольшими порциями энергии — глюонами.Математически эти глюоны описываются полем Янга-Миллса, которое «сгущается» в липкую субстанцию, которая прочно связывает кварки между собой. Глюонное поле обладает такой силой и связывает кварки так прочно, что их невозможно оторвать друг от друга. Это явление называется кварковым конфайнментом,им можно объяснить причину, по которой свободные кварки так и не удалось получить экспериментальным путем.
Например, протон и нейтрон можно сравнить с тремя стальными шарами (кварки) в метательном снаряде для ловли скота бола,им не дает разлететься Y-образная бечевка (глюон). Другие частицы, между которыми существует сильное взаимодействие, например 7 -мезон, можно сравнить с кварком и антикварком, которые удерживаются вместе одной бечевкой (рис. 5.3).
Рис. 5.3. Частицы, между которыми есть сильное взаимодействие, в действительности состоят из еще более мелких частиц, которые называются кварками. Они связаны друг с другом вязким «клеем», который описан полем Янга-Миллса. Протон и нейтрон состоят из трех кварков каждый, а мезон — из кварка и антикварка.
Ясно, что при воздействии на эту конструкцию из стальных шаров мы можем заставить ее колебаться. В мире квантов допустим лишь дискретный набор колебаний. Каждая вибрация группы стальных шаров или кварков соответствует определенному типу субатомных частиц. Таким образом, эта простая (но имеющая огромное значение) схема объясняет, что существует бесконечное множество частиц, связанных сильным взаимодействием. Часть Стандартной модели, описывающая сильное взаимодействие, называется квантовой хромодинамикой (КХД) — квантовой теорией цветового взаимодействия.