Вход/Регистрация
UNIX: разработка сетевых приложений
вернуться

Стивенс Уильям Ричард

Шрифт:

Наиболее значительным изменением, произошедшим при переходе от IPv4 к IPv6, несомненно, является увеличение поля адресов в IPv6. Другое изменение относится к упрощению заголовка, поскольку чем проще заголовок, тем быстрее он будет обработан маршрутизатором. Кроме того, можно отметить еще несколько различий между заголовками:

В IPv6 нет поля длины заголовка, поскольку в заголовке отсутствуют параметры. Существует возможность использовать после фиксированного 40-байтового заголовка дополнительные заголовки, но каждый из них имеет свое поле длины.

Два адреса IPv6 выровнены по 64-разрядной границе, если заголовок также является 64-разрядным. Такой подход может увеличить скорость обработки на 64-разрядных архитектурах. Адреса IPv4 имеют 32-разрядное выравнивание в заголовке IPv4, который в целом выровнен по 64 разрядам.

В заголовке IPv6 нет поля фрагментации, поскольку для этой цели существует специальный заголовок фрагментации. Такое решение было принято, поскольку фрагментация является исключением, а исключения не должны замедлять нормальную обработку.

Заголовок IPv6 не включает в себя свою контрольную сумму. Такое изменение было сделано, поскольку все верхние уровни — TCP, UDP и ICMPv6 — имеют свои контрольные суммы, включающие в себя заголовок верхнего уровня, данные верхнего уровня и такие поля из IPv6-заголовка, как IPv6-адрес отправителя, IPv6-адрес получателя, длину данных и следующий заголовок. Исключив контрольную сумму из заголовка, мы приходим к тому, что маршрутизатор, перенаправляющий пакет, не должен будет пересчитывать контрольную сумму заголовка после того, как изменит поле ограничения пересылок. Ключевым моментом здесь также является скорость маршрутизации.

Если это ваше первое знакомство с IPv6, также следует отметить главные отличия IPv6 от IPv4:

В IPv6 отсутствует многоадресная передача (см. главу 20). Групповая адресация (см. главу 21), не являющаяся обязательной для IPv4, требуется для IPv6.

В IPv6 маршрутизаторы не фрагментируют перенаправляемые пакеты. Если пакет слишком велик, маршрутизатор сбрасывает его и отправляет сообщение об ошибке ICMPv6 (раздел А.6). Фрагментация при использовании IPv6 осуществляется только узлом отправителя.

IPv6 требует поддержки обнаружения транспортной MTU (раздел 2.11). Технически эта поддержка не является обязательной и может не включаться в реализации, обладающие минимальной функциональностью, такие как сетевые загрузчики, но если узел не обнаруживает транспортную MTU, он не должен отсылать дейтаграммы, размер которых превышает минимальную канальную MTU IPv6 (1280 байт). В разделе 22.9 описываются параметры сокетов, управляющие поведением механизма обнаружения транспортной MTU.

IPv6 требует поддержки параметра аутентификации (подтверждения прав доступа) и параметра обеспечения безопасности. Эти параметры добавляются после основного заголовка.

А.4. Адресация IPv4

Адреса IPv4 состоят из 32 разрядов и обычно записываются в виде последовательности из четырех чисел в десятичной форме, разделенных точками. Такая запись называется точечно-десятичной. Первое из четырех чисел определяет тип адреса (табл. А.1). Исторически IP-адреса делились на пять классов. Три класса направленных адресов эквивалентны друг другу с функциональной точки зрения, поэтому мы показываем их как один диапазон.

Таблица А.1. Диапазоны и классы IP-адресов

Назначение Класс Диапазон
Направленная передача А, В, С 0.0.0.0–223.255.255.255
Многоадресная передача D 224.0.0.0–239.255.255.255
Экспериментальные Е 240.0.0.0–255.255.255.255

Под сетевым адресом IPv4 подразумевается 32-разрядный адрес и соответствующая ему 32-разрядная маска подсети. Биты маски, равные 1, указывают адрес сети, а нулевые биты — адрес узла. Поскольку биты со значением 1 всегда занимают места в маске непрерывно начиная с крайнего левого бита, а нулевые биты — начиная с крайнего правого бита, то маску адреса можно определить как префиксную длину( prefix length), указывающую на количество заполненных единицами битов начиная с крайнего левого бита. Например, маска 255.255.255.0 соответствует префиксной длине 24. Такая адресация называется бесклассовой (classless), потому что маска указывается явно, а не задается классом адреса. Пример вы можете увидеть на рис. 1.7.

ПРИМЕЧАНИЕ

Маски подсети, не являющиеся непрерывными, не были явно запрещены ни в одном RFC, но такие маски усложняют работу администраторов и не могут быть представлены в префиксной записи. Протокол междоменной маршрутизации Интернета BGP4 может работать только с непрерывными масками. В протоколе IPv6 требование непрерывности маски выдвигается явно.

Использование бесклассовых адресов подразумевает бесклассовую маршрутизацию, которую обычно называют бесклассовой междоменной маршрутизацией (classless interdomain routing — CIDR) (RFC 1519 [31]). Бесклассовая междоменная маршрутизация позволяет сократить размер таблиц маршрутизации опорной сети Интернета и снизить скорость расходования адресов IPv4. Все маршруты CIDR характеризуются маской или длиной префикса. Маска больше не может быть определена по классу адреса. Более подробно CIDR описывается в разделе 10.8 книги [111].

  • Читать дальше
  • 1
  • ...
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: