Шрифт:
В действительности же эта гипотеза, которую Хойл не так давно изложил без малейших оговорок по английскому радио, является чисто спекулятивной, не связанной с фактами. Она не учитывает, в частности, давления светового излучения, экспериментально обнаруженного еще русским физиком П. Н. Лебедовым.
Действительно, когда световой луч падает на какой либо объект, то он оказывает на него некоторое давление и как бы отталкивает его. Эффект этого давления ничтожен, если объект имеет сравнительно большие размеры, но может стать значительным в случае очень малых частиц.
Например, известно, что именно вследствие давления солнечных лучей кометные хвосты, состоящие из разреженного газа и появляющиеся, когда комета приближается к Солнцу, направлены в сторону, противоположную Солнцу. В. А. Амбарцумян вполне справедливо заметил, что уже одного светового давления достаточно, чтобы воспрепятствовать поглощению межзвездных частиц горячими звездами. С другой стороны, он указал на то, что теория Хойла не позволяет дать удовлетворительное объяснение существованию звездных ассоциаций.
Более того, другие советские ученые (как, например, В. Г. Фесенков, Б. А. Воронцов-Вельяминов) установили, изучая неустойчивые состояния звезд, что многие звезды, в частности звезды большой светимости, выбрасывают большие количества материи в виде газовых оболочек, которые затем рассеиваются в пространстве.
Если изобразить эти результаты с помощью диаграммы Рессела, то видно, что звезды главной последовательности в действительности перемещаются так, как это можно предвидеть, исходя из одновременного уменьшения массы и светимости, т. е. в том направлении, которое принималось первоначально. Это перемещение очень медленно в случае таких звезд, как, например, Солнце, для которых основной механизм потери массы заключается в превращении водорода в гелий. Но оно должно совершаться гораздо быстрее для очень горячих звезд-гигантов, лежащих выше главной последовательности.
Опираясь на тот факт, что некоторые звезды, как, например, новые и звезды типа Вольф — Райе, теряют за короткое время очень значительное количество своего вещества, В. А. Амбарцумян усматривает возможность переходов звезд с одной ветви диаграммы Рессела на другую.
Открытие двух различных типов молодых звезд, входящих соответственно в состав О- и Т-ассоциаций, позволяет предположить наличие двух различных путей эволюции звезд. Действительно, советские астрономы П. П. Паренаго и А. Г. Масевич показали, что имеет место очень ясное различие между звездами, относящимися К верхней и нижней частям главной последовательности. Это различие касается как внутреннего строения звезд, так и их средних скоростей по отношению к соседним звездам. П. П. Паренаго и А. Г. Масевич пришли к выводу, что главная последовательность должна быть разделена на две части, причем место раздела находится немного выше места Солнца на диаграмме. При этом имеется соответствие между двумя частями главной последовательности, с одной стороны, и звездами, рождающимися в ассоциациях одного или другого типа, — с другой.
По предположению Б. В. Кукаркина звезды, которые формируются в О-ассоциациях, находятся сначала рядом с главной последовательностью на диаграмме Рессела. Там они остаются в течение нескольких миллионов лет — времени, которое примерно требуется для того, чтобы ассоциация рассеялась. После того, как они потеряют вследствие так называемого корпускулярного излучения часть своей массы, [58] они попадают на главную последовательность и затем опускаются по ней довольно быстро, поскольку они продолжают терять значительное количество вещества.
58
Корпускулярное излучение — это процесс, при котором происходит непосредственная потеря массы (грубо говоря, выбрасывание звездой в пространство частиц вещества); он принципиально отличается от процесса уменьшения массы за счет светового излучения, которое поддерживается превращением водорода в гелий. (Перев.)
Звезды Т-ассоциаций, напротив, рождаются карликами, аналогичными Солнцу и находящимися на главной последовательности, а затем медленно опускаются по ней вниз, поскольку потеря их массы за счет корпускулярного излучения очень мала. Эти звезды вначале являются желтыми карликами и постепенно превращаются в красных карликов.
Таким образом, советскими астрономами установлено с большой степенью вероятности существование двух путей звездной эволюции. Однако наряду с положительными результатами остается еще большое количество неясных вопросов. Что касается самих звезд О- и Т-ассоциаций, то мы не можем еще с уверенностью сказать, например, во что они превратятся после того, как они исчерпают весь свой запас водорода. Возможно, что звезды Т-ассоциаций, став сначала красными карликами, в конце концов перейдут в состояние белых карликов.
С другой стороны, необходимо объяснить происхождение новых и сверхновых звезд и красных гигантов. Исследования новых и сверхновых звезд пока не позволяют придти к какому-либо определенному выводу. Относительно красных гигантов следует заметить, что часто наблюдают их присутствие в О-ассоциациях вместе с очень горячими (белыми) гигантскими звездами. Согласно В. В. Соболеву эти красные гиганты имеют то же внутреннее строение, что и наблюдающиеся рядом звезды с очень высокой температурой, но они окружены обширной и более холодной оболочкой небольшой массы.
Наконец, остаются нерешенными проблемы вращения звезд. Дело в том, что, как установил Г. А. Шайн, скорость вращения звезд зависит от их физического типа (карлики вращаются в общем медленнее, чем яркие гиганты), причем различие в скорости иногда весьма значительно. Научная космогония должна удовлетворительным образом объяснить этот факт.
Все результаты, которые мы сейчас изложили, относятся к эволюции близких к нам звезд нашей Галактики, т. е. звезд, принадлежащих согласно терминологии Бааде к населению I типа. В 1952 г. Бааде детально изучил звездное население II типа в двух шаровых скоплениях. Пытаясь построить для этих звезд график, аналогичный диаграмме Рессела, он пришел к выводу, что точки, представляющие положения звезд, располагаются на диаграмме спектр — светимость по ломаной линии, резко отличающейся от положения главной последовательности и других ветвей диаграммы, приведенной на стр. 34.