Вход/Регистрация
Возвращение времени. От античной космогонии к космологии будущего
вернуться

Смолин Ли

Шрифт:

– Я прыгну и полечу в садик, к маме – вот как эти птицы.

“Птица” – это было первое произнесенное моим сыном слово. Обычный ментальный конфликт: с одной стороны, родители желают детям больше свободы, с другой – боятся за них. Я строго сказал, что люди не умеют летать и чтобы он даже не пытался. Сын расплакался. Желая отвлечь его, я рассказал о гравитации – силе, которая удерживает нас на земле, заставляет нас и все предметы падать. Неудивительно, что следом я услышал: “Почему?” Даже трехлетний ребенок знает, что дать название явлению еще не значит объяснить его. Мы затеяли игру: стали бросать игрушки в садик, производя “сперименты” и наблюдая, все ли они падают одинаково. Я задумался над вопросом, который выходит за рамки понимания трехлетнего ребенка. По какой траектории падают предметы?

Неудивительно, что этим вопросом не задается трехлетний ребенок – тысячелетиями он, кажется, не возникал вообще ни у кого. Им, вероятно, не задавались ни Аристотель, ни Платон, ни другие античные философы.

Первым форму траектории падающих тел исследовал Галилео Галилей. В самом начале XVII века он изложил результаты своих изысканий в трактате “Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению”. Ученый утверждал в этой работе, написанной в 70-летнем возрасте (по приговору инквизиции он сидел под домашним арестом): траектория падающих тел описывается параболой. Этот факт вытекает из другого факта, который первым установил именно Галилей: тела падают с одинаковым ускорением.

То, что траектория падающего тела описывается параболой – одно из самых замечательных открытий, сделанных учеными. Падает все – и одинаково. Не имеет значения, из чего и для чего предмет, а также сколько раз, с какой высоты и с какой скоростью мы его бросаем. Мы можем повторять эксперимент сколько душе угодно, и всякий раз предмет будет двигаться по параболе. Эта кривая (все точки плоскости, равноудаленные от данной прямой и данной точки) – одна из самых простых в математике.

Рис. 1. Парабола – это геометрическое место точек, равноудаленных от данной прямой и данной точки.

Парабола была известна математикам задолго до Галилея. Наблюдение, что падающие тела описывают параболу – один из первых примеров закона природы, то есть регулярного поведения в небольшой части Вселенной. (В данном случае частью Вселенной – ее подсистемой – является сам предмет, падающий вблизи поверхности планеты.) Такое случалось огромное количество раз в разных местах со времен рождения Вселенной. Следовательно, есть множество ситуаций, к которым применим этот закон.

Подросший ребенок может спросить: “А о чем это говорит? Почему математический объект, плод нашего воображения, имеет нечто общее с природным явлением? И почему такое распространенное явление, как падение, должно иметь самое простое и красивое во всей геометрии описание?”

Со времен Галилея ученые успешно пользуются математикой для описания физических явлений. Сейчас очевидно, что законы физики выражаются на языке математики, однако две тысячи лет (с тех пор, как Евклид сформулировал свои аксиомы) никто не догадывался применить математический закон к описанию движения на Земле. С античности до XVII века ученые знали о параболе, но ни один из них не пожелал выяснить, по какой траектории летит брошенный мячик, выпущенная стрела или любой другой предмет [15] . Каждый ученый мог сделать открытие, которое сделал Галилей: все, что ему для этого понадобилось, существовало уже в Афинах времен Платона и в Александрии времен Гипатии.

15

И это несмотря на многочисленные попытки исламских и средневековых философов понять причины движения.

Что заставило Галилея применить математику для описания падения тел? Это вопрос из тех, которые легко задать, но на которые трудно ответить. Что такое вообще математика? Как она стала наукой?

Математические объекты – плоды чистого мышления. Мы не найдем параболу в природе. Парабола, окружность или прямая, – это идеи. Мы облекаем их в определения: “Окружность – геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки. Парабола – все точки плоскости, равноудаленные от данной прямой и данной точки”. Раз у нас есть определение, мы можем определить свойства кривой. В школе нас учили, что такой вывод может быть формализован и представлять собой доказательство – выстроенные в цепь умозаключения. В этом формальном процессе не остается места наблюдению или измерению [16] .

16

Математики говорят о кривых, числах и так далее как о математических “объектах”, что предполагает их своего рода существование. Вам, возможно, будет удобнее называть их “понятиями”. Я буду использовать оба этих слова.

Рисунок может иллюстрировать доказанные свойства, но он всегда неточен. Это верно и для знакомых нам кривых: для спины потягивающейся кошки или тросов, на которых подвешен мост. Это лишь приблизительно напоминает математические кривые, и, если приглядеться, мы всегда найдем отклонения от идеальных математических форм. Итак, математика рассматривает нереальные объекты, которые, тем не менее, отражают реальный мир. Каким образом? Отношение между реальным миром и миром математики неочевидно даже в простейших случаях.

Что общего у математики и гравитации? Математика играет в разгадке тайны времени роль не меньшую, чем гравитация, и следует знать, как математика соотносится с природой в случае падающих тел. Иначе, когда слышишь утверждение типа: “Вселенная – четырехмерное пространственно-временное многообразие”, ты становишься добычей мистификаторов, которые преподносят метафизические фантазии под научным соусом.

Несмотря на то, что в природе не встречаются идеальные окружности или параболы, у них есть общее с материальными объектами свойство: устойчивость по отношению к манипуляциям. Число – отношение длины окружности к ее диаметру – это идея. Но только лишь идея была высказана, как значение стало объективным. Были попытки узаконить значение, и они продемонстрировали наше глубокое непонимание. Мы не можем изменить значение, как бы нам ни хотелось. То же верно для свойств кривых, да и любого математического объекта.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: