Вход/Регистрация
Бозон Хиггса. От научной идеи до открытия «частицы Бога»
вернуться

Бэгготт Джим

Шрифт:

А как насчет слабого ядерного взаимодействия?

Слабое взаимодействие представляло собой некую тайну. В начале 1930-х годов итальянскому физику Энрико Ферми пришлось прибегнуть к новому типу ядерного взаимодействия в детальной теории бета-радиоактивности. Он изложил свою теорию коллегам, с которыми проводил лыжный отпуск в Итальянских Альпах в Рождество 1933 года. Его коллега Эмилио Сегре впоследствии рассказал, как это было: «…Мы все сидели на одной кровати в гостиничном номере, и мне никак не сиделось, потому что я насажал синяков, пока падал на ледяной наст. Ферми полностью осознавал, насколько важно его открытие, и сказал, что, по его мнению, его запомнят по этой работе, лучшей до тех пор» [36] .

36

Segre E., Fermi E. Physicist. University of Chicago Press, 1970. P. 72.

Ферми провел параллель между слабым взаимодействием и электромагнитным. В итоге получилась теория, похожая на теорию электромагнетизма, и он смог вывести диапазон энергий (и, следовательно, скоростей) испускаемых бета-электронов. В 1949 году в Колумбийском университете американский физик китайского происхождения Ву Цзяньсюн провел эксперименты, показавшие, что предсказания Ферми верны. С некоторыми небольшими поправками теория Ферми остается верной и по сей день.

Ферми пришел к выводу, что взаимодействие между частицами, участвующими в бета-распаде, примерно в 10 миллиардов раз слабее электромагнитных взаимодействий между заряженными частицами. Оно действительно слабое, но все же имеет некоторые далекоидущие следствия. Из-за слабого взаимодействия нейтроны внутренне нестабильны. Нейтрон, движущийся в свободном пространстве, распадается всего через 18 минут. Это необычное поведение для частицы, считающейся фундаментальной или элементарной [37] .

37

Тому, кто интересуется еще более глубоким следствием слабого взаимодействия, достаточно посмотреть на стандартную солнечную модель – современную теорию, описывающую процессы в Солнце. Слияние протонов (ядер водорода) для образования ядер гелия в центре Солнца означает превращение двух протонов в два нейтрона через слабое взаимодействие, сопровождаемое испусканием двух позитронов и двух нейтрино.

Конечно, прибегать к неизвестной силе природы, чтобы объяснить тип взаимодействия, – это было слишком. Но когда экспериментаторы стали внимательно просматривать «зоопарк» новых элементарных частиц, которые стали обнаруживаться среди обломков высокоэнергетических столкновений, появились свидетельства существования других видов частиц, восприимчивых к слабому взаимодействию.

В 1930-х ученому, который хотел изучать столкновения высокоэнергетических частиц, нужно было забраться на гору. Космические лучи – потоки частиц высоких энергий, приходящих из космоса, – непрерывно заливают верхние слои атмосферы. Некоторые частицы ультравысокой энергии, из которых состоят лучи, могут проникать в нижние слоя атмосферы до уровня горных вершин, где можно изучать их столкновения. Такие исследования зависят от случайного обнаружения частиц, и потому любые два события всегда имеют неодинаковые условия.

Американский физик Карл Андерсон открыл позитрон Дирака в 1932 году. Четыре года спустя он и его соотечественник Сет Неддермейер погрузили свой детектор элементарных частиц на грузовик и отправились на вершину Пайкс-Пик в Скалистых горах, примерно в 10 милях на запад от Колорадо-Спрингс [38] . В следах космических лучей физики обнаружили еще одну новую частицу. Эта частица вела себя, как электрон, но оказалось, что магнитное поле отклоняет ее гораздо меньше.

38

На самом деле их грузовик не добрался до шлагбаума, и остаток пути их пришлось тащить на буксире. Бюджет для этих экспериментов был очень скудный, но ученым повезло встретить по дороге вице-президента «Дженерал моторс», который испытывал в горах новый грузовик «шевроле». Он любезно устроил так, чтобы грузовик с детектором довезли до нужного места, и оплатил замену двигателя.

Частица отклонялась медленнее, чем электрон, и резче, чем протон на аналогичной скорости (в противоположном направлении). Физикам не осталось ничего иного, кроме как заключить, что это новый «тяжелый» электрон с массой примерно в 200 раз больше обычного электрона. Это не мог быть протон, так как масса протона примерно в 2 тысячи раз больше массы электрона [39] .

Новую частицу сначала назвали мезотроном, а позднее сократили до мезона. Это было неприятное открытие. Тяжелый вариант электрона? Он не укладывался ни в одну теорию или представление о том, как должны быть организованы фундаментальные частицы природы.

39

В действительности отношение масс покоя у протона и электрона (масс, которыми эти частицы обладали бы при нулевой скорости) равно 1836.

В возмущении американский физик галицийского происхождения Исидор Раби хотел знать: «Кто это при казал?» [40] Уиллис Лэмб в своей Нобелевской лекции 1955 года отозвался в таком же раздраженном духе, сказав: «…Раньше тот, кто находил новую элементарную частицу, получал в награду Нобелевскую премию, но теперь такие открытия должны наказываться штрафом в 10 тысяч долларов» [41] .

В 1947 году на вершине Миди-де-Бигор в Французских Пиренеях физик Бристольского университета Сесил Пауэлл со своей командой обнаружил в космических лучах еще одну новую частицу. Новая частица имела чуть большую массу, чем мезон, и была в 273 раза массивнее электрона. Она наблюдалась в положительно и отрицательно заряженных вариантах, а позднее и в нейтральных.

40

Rabi I. Цит. по: Kragh H. Quantum Generations. P. 204.

41

Lamb W. Nobel Lectures, Physics 1942–1962. Amsterdam: Elsevier, 1964. P. 286.

У физиков стали заканчиваться названия. Мезон переименовали в мю-мезон, впоследствии сокращенный до мюон [42] . Новую частицу назвали пи-мезон (пион). С усовершенствованием техники обнаружения частиц в космических лучах разверзлись хляби небесные. За пионом тут же последовали положительный и отрицательный K-мезон (каон) и нейтральная лямбда-частица. Новые названия посыпались как из рога изобилия. Отвечая на вопрос одного молодого физика, Ферми заметил: «Молодой человек, если бы я был в состоянии запомнить названия всех частиц, я пошел бы в ботаники» [43] .

42

Это было время большой путаницы. Как вскоре выяснилось, мюмезон на самом деле не относится к классу частиц, которые стали называться собирательным термином мезоны.

43

Цит. по: Kragh H. Quantum Generations. P. 321.

Каоны и лямбда-частицы вели себя довольно странно. Они встречались во множестве, что было признаком сильного взаимодействия. Они часто возникали парами, которые образовывали характерные V-образные следы. Затем они продолжали путь и распадались. Их распад занимал гораздо больше времени, чем возникновение, и это позволяло предположить, что, хотя частицы возникают благодаря сильному взаимодействию, их формами распада управляет гораздо более слабое взаимодействие, такое же, по сути дела, которое управляет радиоактивным бета-распадом.

  • Читать дальше
  • 1
  • ...
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: