Вход/Регистрация
Разработка ядра Linux
вернуться

Лав Роберт

Шрифт:

Копирование при записи

Традиционно при выполнении функции

fork
делался дубликат всех ресурсов родительского процесса и передавался порожденному. Такой подход достаточно наивный и неэффективный. В операционной системе Linux вызов
fork
реализован с использованием механизма копирования при записи (copy-on-write) страниц памяти. Технология копирования при записи (copy-on-write, COW) позволяет отложить или вообще предотвратить копирование данных. Вместо создания дубликата адресного пространства процесса родительский и порожденный процессы могут совместно использовать одну и ту же копию адресного пространства. Однако при этом данные помечаются особым образом, и если вдруг один из процессов начинает изменять данные, то создается дубликат данных, и каждый процесс получает уникальную копию данных. Следовательно, дубликаты ресурсов создаются только тогда, когда в эти ресурсы осуществляется запись, а до того момента они используются совместно в режиме только для чтения (read-only). Такая техника позволяет задержать копирование каждой страницы памяти до того момента, пока в эту страницу памяти не будет осуществляться запись. В случае, если в страницы памяти никогда не делается запись, как, например, при вызове функции
exec
сразу после вызова
fork
, то эти страницы никогда и не копируются. Единственные накладные расходы, которые вносит вызов функции
fork
, — это копирование таблиц страниц родительского процесса и создание дескриптора порожденного процесса. Данная оптимизация предотвращает ненужное копирование большого количества данных (размер адресного пространства часто может быть более 10 Мбайт), так как процесс после разветвления в большинстве случаев сразу же начинает выполнять новый исполняемый образ. Эта оптимизация очень важна, потому чти идеология операционной системы Unix предусматривает быстрое выполнение процессов.

Функция
fork

В операционной системе Linux функция

fork
реализована через системный вызов
clone
. Этот системный вызов может принимать в качестве аргументов набор флагов, определяющих, какие ресурсы должны быть общими (если вообще должны) у родительского и порожденного процессов. Далее в разделе "Реализация потоков в ядре Linux" об этих флагах рассказано более подробно. Библиотечные вызовы
fork
,
vfork
и
__clone
вызывают системную функцию
clone
с соответствующими флагами. В свою очередь системный вызов
clone
вызывает функцию ядра
do_fork
.

Основную массу работы по разветвлению процесса выполняет функция

do_fork
, которая определена в файле
kernel/fork.c
. Эта функция, в свою очередь, вызывает функцию
copy_process
и запускает новый процесс на выполнение. Ниже описана та интересная работа, которую выполняет функция
copy_process
.

• Вызывается функция

dup_task_struct
, которая создает стек ядра, структуры
thread_info
и
task_struct
для нового процесса, причем все значения указанных структур данных идентичны для порождающего и порожденного процессов. На этом этапе дескрипторы родительского и порожденного процессов идентичны.

• Проверяется, не произойдет ли при создании нового процесса переполнение лимита на количество процессов для данного пользователя.

• Теперь необходимо сделать порожденный процесс отличным от родительского. При этом различные поля дескриптора порожденного процесса очищаются или устанавливаются в начальные значения. Большое количество данных дескриптора процесса является совместно используемым.

• Далее состояние порожденного процесса устанавливается в значение

TASK_UNINTERRUPTIBLE
, чтобы гарантировать, что порожденный процесс не будет выполняться.

• Из функции

copy_process
вызывается функция
copy_flags
, которая обновляет значение поля
flags
структуры
task struct
. При этом сбрасывается флаг
PF_SUPERPRIV
, который определяет, имеет ли процесс права суперпользователя. Флаг
PF_FORKNOEXEC
, который указывает на то, что процесс не вызвал функцию
exec
, — устанавливается.

• Вызывается функция

get_pid
, которая назначает новое значение идентификатора
PID
для новой задачи.

• В зависимости от значений флагов, переданных в функцию

clone
, осуществляется копирование или совместное использование открытых файлов, информации о файловой системе, обработчиков сигналов, адресного пространства процесса и пространства имен (namespace). Обычно эти ресурсы совместно используются потоками одного процесса. В противном случае они будут уникальными и будут копироваться на этом этапе.

• Происходит разделение оставшейся части кванта времени между родительским и порожденным процессами (это более подробно обсуждается в главе 4, "Планирование выполнения процессов").

• Наконец, происходит окончательная зачистка структур данных и возвращается указатель на новый порожденный процесс.

Далее происходит возврат в функцию

do_fork
. Если возврат из функции
copy_process
происходит успешно, то новый порожденный процесс возобновляет выполнение. Порожденный процесс намеренно запускается на выполнение раньше родительского [16] .

В обычной ситуации, когда порожденный процесс сразу же вызывает функцию

exec
, это позволяет избежать накладных расходов, связанных с тем, что если родительский процесс начинает выполняться первым, то он будет ожидать возможности записи в адресное пространство посредством механизма копирования при записи.

16

В действительности сейчас это работает не так, как хотелось бы, однако усилия прилагаются к тому, чтобы порожденный процесс запускался на выполнение первым.

Функция
vfork

Системный вызов

vfork
позволяет получить тот же эффект, что и системный вызов
fork
, за исключением того, что записи таблиц страниц родительского процесса не копируются. Вместо этого порожденный процесс запускается как отдельный поток в адресном пространстве родительского процесса и родительский процесс блокируется до того момента, пока порожденный процесс не вызовет функцию
exec
или не завершится. Порожденному процессу запрещена запись в адресное пространство. Такая оптимизация была желанной в старые времена 3BSD, когда реализация системного вызова
fork
не базировалась на технике копирования страниц памяти при записи. Сегодня, при использовании техники копирования страниц памяти при записи и запуске порожденного процесса перед родительским, единственное преимущество вызова
vfork
— это отсутствие копирования таблиц страниц родительского процесса. Если когда-нибудь в операционной системе Linux будет реализовано копирование полей таблиц страниц при записи [17] , то вообще не останется никаких преимуществ. Поскольку семантика функции
vfork
достаточно ненадежна (что, например, будет, если вызов
exec
завершится неудачно?), то было бы здорово, если бы системный вызов
vfork
умер медленной и мучительной смертью. Вполне можно реализовать системный вызов
vfork
через обычный вызов
fork
, что действительно имело место в ядрах Linux до версии 2.2.

17

В действительности уже сейчас есть заплаты для добавления такой функции в ОС Linux. Хотя, скорее всего, возможность совместного использования таблиц страниц в ядрах серии 2.6 реализована не будет, такая возможность может появиться в будущих версиях.

  • Читать дальше
  • 1
  • ...
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: