Вход/Регистрация
1. Современная наука о природе, законы механики
вернуться

Фейнман Ричард Филлипс

Шрифт:

Фиг.4.2. Обратимая машина. а — начальное положение; б — за­грузка шаров; в —. 1 кг поднимает 3 кг на высоту X; г —разгрузка шаров; д — восстановление; е — ко­нечное положение.

Четвертый лежит на подставке в одном метре от пола. Машина может поднять три шара, опустив один шар на 1 м. Устроим подвижную платформу с тремя полками высо­той X, и пусть высота полок стеллажа тоже будет X (фиг. 4.2,а). Перекатим сперва шары со стеллажа на полки платформы (фиг. 4.2,6); предположим, что для этого энергии не понадобится, потому что полки и стеллаж находятся на одной высоте. Затем включим обратимую машину: она скатит одиночный шар на пол и подымет платформу на высоту X (фиг. 4.2,в). Но мы скон­струировали платформу столь остроумно, что шары опять ока­зались в точности на уровне полок стеллажа. Разгрузим же шары с платформы на стеллаж (фиг. 4.2,г). После разгрузки машина вернется в первоначальное положение. Теперь уже три шара лежат на трех верхних полках стеллажа, а четвертый шар - на полу. Но смотрите, какая странная вещь: по существу два шара мы не поднимали вовсе, ведь на полках 2 и 3 шары как лежали вна­чале, так лежат и теперь. В итоге поднялся только один шар, но зато на вы­соту 3Х. Если бы высота ЗХ оказалась больше 1 м, то можно было бы опу­стить шар, чтобы вернуть машину к начальным усло­виям (фиг. 4.2,е) и начать работу сначала. Значит, высота 3Х не может быть больше 1 м, ибо начнется веч­ное движение. Точно так же можно доказать, что 1 м не может быть больше 3Х: машина обратима, пустим ее на­зад и докажем. Итак, 3Х ни больше, ни меньше 1 м. Мы открыли при помощи одних только рассуждений закон: Х=1/3 м. Обобщить его легко; 1 кг падает при работе обратимой машины с некоторой высоты; тогда машина способна поднять р кг на 1/р высоты. Если, другими словами, 3 кг умножить на высоту их подъема (X), то это равно 1 кг, умноженному на вы­соту его падения (1 м). Помножив все грузы в машине на высо­ту, на которой они лежат, дайте машине поработать и опять помножьте все веса на их высоты подъема; в итоге должно выйти то же самое. (Мы перешли от случая, когда двигался только один груз, к случаю, когда за счет опускания одного груза поднимается несколько грузов. Но это, надеюсь, понятно?) Назовем сумму весов, умноженных на высоту, потенциаль­ной энергией тяготения, т. е. энергией, которой обладает тело вследствие своего положения в пространстве по отношению к земле. Формула для энергии тяготения, пока тело не слишком далеко от земли (вес при подъеме ослабляется), такова:

(Потенциальная энергия тяготениях для одного тела) = (Вес)X(Высота). (4.3)

Не правда ли, очень красивое рассуждение? Вопрос только в том, справедливо ли оно. (Ведь, в конце концов, природа не обязана следовать нашим рассуждениям.) Например, не исклю­чено, что в действительности вечное движение возможно. Или другие предположения ошибочны. Или мы просмотрели что-то в своих рассуждениях. Поэтому их непременно нужно про­верить. И вот — справедливость их подтверждает опыт.

Потенциальная энергия — это общее название для энергии, связанной с расположением по отношению к чему-либо. В дан­ном частном случае это — потенциальная энергия тяготения. Если же производится работа против электрических сил, а не сил тяготения, если мы «поднимаем» заряды «над» другими за­рядами с помощью многочисленных рычагов, тогда запас энер­гии именуется электрической потенциальной анергией. Общий принцип состоит в том, что изменения энергии равны силе, умноженной на то расстояние, на котором она действует:

По мере чтения курса мы еще не раз будем возвращаться к дру­гим видам потенциальной энергии.

Принцип сохранения энергии во многих обстоятельствах оказывается очень полезен при предсказании того, что может произойти. В средней школе мы учили немало правил о блоках и рычагах. Мы можем теперь убедиться, что все эти «законы» сводятся к одному, и нет нужды запоминать 75 правил. Вот вам простой пример: наклонная плоскость. Пусть это треугольник со сторонами 3, 4, 5 (фиг. 4.3).

Фиг. 4.3. Наклонная плоскость.

Подвесим к блочку груз весом 1 кг и положим его на плоскость, а с другой стороны подвесим груз W.

Мы хотим знать, какова должна быть тяжесть W, чтобы урав­новесить груз 1 кг. Рассуждаем так. Если грузы W и 1 кг урав­новешены, то это — обратимое состояние, и веревку можно двигать вверх—вниз. Пусть же вначале (фиг. 4.3,а) 1 кг на­ходится внизу плоскости, а груз W — наверху. Когда W со­скользнет вниз, груз 1 кг окажется наверху, a W опустится на длину склона (фиг. 4.3,6), т. е, на 5 м. Но ведь мы подняли 1 кг только на высоту 3 м, хотя опустили W на 5 м. Значит, W=3/5 кг. Заметьте, что этот лов­кий вывод получен не из разложения сил, а из сохранения энергии. Ловкость, впрочем, отно­сительна. Существует другой вывод, куда красивее. Он приду­ман Стевином и даже высечен на его надгробии. Фиг. 4.4 объяс­няет, почему должно получиться 3/5 кг: цепь не вращается и нижняя ее часть уравновешена сама собой, значит сила тяги пяти звеньев с одной стороны должна уравнять силу тяги трех звеньев с другой (по длине сторон).

Фиг. 4.4. Это выгравировано на надгробии Стевина.

Глядя на диаграмму, становится очевидно, что W = 3/5 кг. (Неплохо было бы, если бы когда-нибудь что-нибудь подобное высекли и на вашем надгробном камне.)

А вот задача посложнее: домкрат, показанный на фиг. 4.5.

Фиг. 4.5. Домкрат.

Посмотрим, как в таком случае применять этот принцип. Для вращения домкрата служит ручка длиной 1 м, а нарезка винта имеет 4 витка на 1 см. Какую силу нужно приложить к ручке, чтобы поднять 1 m. Желая поднять 1 т на 1 см, мы должны обой­ти домкрат четырежды, каждый раз делая по 6,28 м (2pr), а всего 25,12 м. Используя различные блоки и т. п., мы действи­тельно можем поднять 1 т с помощью неизвестного груза W, приложенного к концу ручки. Ясно, что W равно примерно 400 г. Это — следствие сохранения энергии.

И еще более сложный пример (фиг. 4.6).

Фиг. 4.6. Нагруженный стер­жень, подпертый с одного конца.

Подопрем один ко­нец стержня (или рейки) длиной 8 м. Посредине рейки поместим груз весом 60 кг, а в 2 м от подпорки — груз весом 100 кг. Сколь­ко надо силы, чтобы удержать рейку за другой конец в равно­весии, пренебрегая ее весом? Пусть мы прикрепили блок и пе­рекинули через него веревку, привязав ее к концу рейки. Каков же должен быть вес W, уравновешивающий стержень? Пред­ставим, что вес опустился на произвольное расстояние (для простоты пусть это будет 4 см); на сколько тогда поднимутся наши два груза? Середина рейки на 2 см, а второй груз (он ле­жит на четверти длины рейки) на 1 см. Значит, в согласии с пра­вилом, что сумма весов, умноженных на высоты, не меняется, мы должны написать: вес W на 4 см вниз плюс 60 кг на 2 см вверх плюс 100 кг на 1 см вверх, что после сложения должно дать нуль:

  • Читать дальше
  • 1
  • ...
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: