Вход/Регистрация
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
вернуться

Фейнман Ричард Филлипс

Шрифт:

Но если мы находимся в точке Q, по другую сторону от Р, то нам понадобится только верхний конец спиральной кривой. Другими словами, начальной точкой результирующего вектора будет не D, a BQ, и, следовательно, книзу от Р интенсивность должна непрерывно падать при удалении Q в область тени.

Есть одна величина, которую можно легко вычислить сразу и таким образом убедиться, что мы здесь что-то понимаем,— это интенсивность в точке, лежащей прямо против края. Эта интенсивность равна 1/4 от интенсивности падающего света. Причина: для точки, лежащей против края предмета (когда Вр совпадает с D на фиг. 30.8), получается половина кривой в от­личие от целой кривой, которая была бы получена, если бы точки лежали достаточно далеко в освещенной области. Если точка R расположена достаточно высоко, результирующий вектор проводится от центра одной спирали до центра другой, а для точки на краю тени амплитуда равна половине этого век­тора; следовательно, отношение интенсивностей получается равным 1/4.

В этой главе мы вычисляли интенсивность в разных направ­лениях при различном расположении источников. В заключение выведем формулу, которая нам понадобится в следующей гла­ве, посвященной показателю преломления. До сих пор мы об­ходились только относительными интенсивностями, а на этот раз мы получим формулу для полной величины поля при усло­виях, о которых будет рассказано ниже.

§ 7. Поле системы осцилляторов, расположенных на плоскости

Предположим, что имеется некоторая плоскость, которую за­полняют осцилляторы, причем все они колеблются в плоскости одновременно, с одной амплитудой и фазой. Чему равно поле на конечном, но достаточно большом расстоянии от плоскости? (Мы не можем выбрать точку наблюдения очень близко от плос­кости, потому что у нас нет точных формул для поля вблизи источников.) Пусть плоскость зарядов совпадает с плоскостью XY и нас интересует поле в точке Р, лежащей на оси z, достаточ­но далеко от плоскости (фиг. 30.10). Предположим, что число зарядов на единичной площадке равно n, а величина каждого заряда д. Все заряды совершают одинаковые гармонические колебания в одном и том же направлении, с той же амплитудой и фазой. Смещение заряда из его среднего положения описы­вается функцией x0coswt. Вводя комплексную амплитуду, действительная часть которой дает реальное движение, будем описывать колебание заряда функцией x0eiwt.

Чтобы найти поле, создаваемое всеми зарядами в точке Р, нужно вычислить сначала поле отдельного заряда q, а затем сложить поля всех зарядов. Как известно, поле излучения про­порционально ускорению заряда, т. е.. — w2x0еiwt (и одинаково для всех зарядов). Электрическое поле в точке Р, создаваемое зарядом в точке Q, пропорционально ускорению заряда q, нужно только помнить, что поле в точке Р в момент времени t определяется ускорением заряда в более ранний момент времени t' =t-r/c, где r/c — время, за которое волна проходит расстояние от Q до Р. Поэтому поле в точке Рпропорционально

(30.10)

Фиг. 30.10. Поле излучения ос­циллирующих зарядов, заполняю­щих плоскость.

Подставляя это значение ускорения в формулу для поля, соз­даваемого зарядом на большом расстоянии, получаем

Однако эта формула не совсем правильна, поскольку нужно брать не все ускорение целиком, а его компоненту, перпендику­лярную линии QP. Мы предположим, однако, что точка Рнахо­дится от плоскости намного дальше, чем точка Qот оси z (рас­стояние r на фиг. 30.10), так что для эффектов, которые мы хо­тим учесть, косинус можно заменить единицей (косинус и так довольно близок к единице).

Полное поле в точке Р получается суммированием вкладов от всех зарядов в плоскости. Разумеется, мы должны взять векторную сумму полей. Но поскольку направление поля при­мерно одинаково для всех зарядов, в рамках сделанного прибли­жения достаточно сложить величины всех полей. Кроме того, в нашем приближении поле в точке Рзависит только от r, сле­довательно, все заряды с одинаковым rсоздают равные поля. Поэтому, прежде всего, сложим поля всех зарядов в кольце ши­риной dr и радиусом r. Интегрируя затем по всем r, получаем полное поле всех зарядов.

Число зарядов в кольце равно произведению площади кольца, 2nrdr, на h— плотность зарядов на единицу площади. Отсюда

Интеграл берется в пределах r=0 и r=Ґ. Время t, конечно, зафиксировано, так что единственными меняющимися величинами являются r и r. Отвлечемся пока от постоянных множителей, включая и eiwt, и вычислим интеграл

(30.13)

Для этого учтем соотношение между r и r:

(30.14)

При дифференцировании формулы (30.14) z нужно считать независимым от r, тогда

2rdr = 2rdr,

что очень кстати, поскольку при замене в интеграле rdr на rdr знаменатель r сокращается. Интеграл приобретает более простой вид

(30.15)

. Экспонента интегрируется очень просто. Нужно поставить в знаменатель коэффициент при rв показателе экспоненты и взять саму экспоненту в точках, соответствующих пределам. Но пределы по rотличаются от пределов по р. Когда r=0, нижний предел r=z, т. е. пределы по r равны z и бесконечности. Ин­теграл (30.15) равен

(30.16)

Вместо (r/с)Ґ мы здесь написали Ґ, поскольку и то и другое означает просто сколь угодно большую величину!

А вот е– iҐ— величина загадочная. Ее действительная часть, равная cos (-Ґ), с математической точки зрения величина со­вершенно неопределенная. [Хотя можно допустить, что она на­ходится где-то [а может быть и всюду (?)—между +1 и -1!]Но в физической ситуации эта величина может означать нечто вполне разумное и обычно оказывается равной нулю. Чтобы убедиться, что это так в нашем случае, вернемся к первоначальному инте­гралу (30.15)

  • Читать дальше
  • 1
  • ...
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: