Шрифт:
Когда мы представляем себе вакуум в виде полной пустоты, вопрос о том, могут ли существовать различные вакуумы, просто не возникает — пустота может быть одна. Все прочее — просто не пустота. Другое дело, если вакуум материален, веществен. Тогда не исключено, что существуют миры с различным вакуумом, и, может быть, наш мир — только один из них. Ведь если все в природе изменяется, пребывает в различных формах, то почему вакуум должен быть исключением?
В действительности проблема вакуума еще сложнее. Некоторые ученые считают, что все материальное содержание мира представляет собой проявление различных свойств пустого, но сложным образом искривленного, скрученного пространства — вакуума.
Итак, с одной стороны, вакуум—это сложная материальная вещественная структура, а с другой, наоборот, оказывается, что само вещество — «искривленная пустота». Так что же такое в конце концов вакуум?
Понятие пустоты — не только объект физической науки, но и один из основных элементов наших представлений о мире в целом. Любая попытка понять его устройство, построить хотя бы приближенную его модель так или иначе связана с этим понятием. На протяжении многих веков оно неоднократно изменялось, отражая сдвиги в мифологическом, религиозном и научном мировоззрениях.
Различные физические и философские школы по-разному относились к понятию пустоты. Знаменитый древнегреческий мыслитель Фалес Милетский, который первым попытался разложить мир на исходные, первичные стихии — элементы, был убежден, что абсолютной пустоты в мире быть не может: любая, даже самая малая его часть заполнена водой, воздухом или еще какой-либо стихией. Демокрит же, напротив, считал пустоту истинной первоосновой мира, на фоне которой как раз и проявляется вся сложность наблюдаемых нами вещей и явлений. Только пустота, учил он, позволяет телам двигаться в пространстве. Если бы все вокруг было чем-то заполнено, то как и куда бы они перемещались? Сжатие тоже требует пустоты.
Пустоты нет, возражал ему Платон. Тела движутся, замещая собой заполняющую все пространство среду. Это подобно вращению колеса: одна его часть замещает другую, и нигде нет разрывов...
Конечно, это были лишь догадки, умозрительные заключения. Возможность практического изучения пустоты появилась много веков спустя. Но шли годы, развивалась техника, и опыт, постепенно убеждал людей в том, что, используя все более и более усовершенствованные приспособления, можно насколько угодно близко подойти к «полной пустоте». Представление о вакууме как о пространстве, из которого «вычерпано» все его материальное содержание, стало казаться самоочевидным, и проблема пустоты на некоторое время перестала волновать умы ученых. Ни у кого не возникало сомнений, что этот вопрос решен окончательно и бесповоротно.
Однако на фундаментальные вопросы, касающиеся свойств и структуры мира, раз и навсегда данного, окончательного ответа не существует. Любой ответ оказывается приближенным и рано или поздно требует дальнейшего уточнения. Более того, представления, казавшиеся ранее взаимоисключающими, на новом, более глубоком уровне знаний часто оказываются тесно связанными, даже выражаются одно через другое. Так случилось и с понятием пустоты. Вопрос о смысле этого понятия превратился в одну из основных физических проблем после того, как были открыты волновые свойства света, и буквально приковал к себе внимание ученых.
Каким образом световая волна бежит в вакууме, если там нет ничего, что могло бы передавать это движение от точки к точке? Не указывает ли сам факт распространения световой волны на то, что вакуум — это все же не пустота, а какая-то особая светоносная субстанция, скажем эфир? Субстанция до того тонкая, что проникает сквозь стенки всех сосудов и ее в отличие от воздуха в принципе нельзя ниоткуда откачать.
Три с половиной столетия назад Рене Декарт, французский математик, физик и философ, писал: «Мы считаем сосуд пустым, когда в нем нет воды, но на самом деле там остается воздух. Если теперь из кажущегося пустым сосуда убрать и воздух, в нем опять что-то должно остаться, но этого «что-то» мы просто не чувствуем». Вот это «что-то» и есть эфир.
Но почему тогда эта заполняющая все пространство субстанция не мешает движению небесных тел, которое веками остается неизменным, хотя для того, чтобы передавать световые волны, эфирная среда должна обладать весьма значительной плотностью? Почему ни в одном эксперименте не удается заметить «эфирный ветер»?
Несколько столетий все это оставалось загадкой. Ответ был найден квантовой механикой совсем недавно — в 20-х годах нашего века. Оказалось, что движение каждой отдельной световой частицы, фотона, настолько сложно и прихотливо, что с определенной вероятностью ее можно обнаружить в самых различных точках пространства. Строгие закономерности проявляются лишь при рассмотрении большого числа фотонов. И вот статистически, в среднем, световые частицы распределяются в пространстве таким образом, что их поведение выглядит как распространение волны. Поодиночке каждый фотон — частица, корпускула, а в совокупности они — волна. И никакой эфирной среды для этого не требуется, квантовые законы, описывающие поведение света, прекрасно действуют и в вакууме.
Для того чтобы сделать картину нагляднее, иногда говорят, что фотоны двигаются в пустом пространстве по нечетко определенным, размазанным траекториям, а «размазка» имеет форму волны. Это очень упрощенное описание того, что происходит на самом деле, но некоторое представление о характере явления отсюда получить можно.
Заметим, впрочем, что такими свойствами обладают не только фотоны, но и все другие микрочастицы. Каждая из них одновременно имеет корпускулярные и волновые характеристики. Таковы законы квантовой механики.