Шрифт:
В этом приложении Гоббс ссылается не только на Elenchus Валлиса, но и на две другие книги математика, «несостоятельность которых я четко и ясно доказал. И я твердо убежден, что от начала существования мира не было, да и никогда больше не будет написано столько глупости по геометрии». В уроке III он называет книги Валлиса «научно безграмотными и абсолютно непонятными». В уроке IV он, обращаясь к Валлису, пишет: «Ваша жалкая книжонка…»{49} И что ему до того, что в своей «жалкой книжонке» Arithmetica Jnfinitorum («Арифметика бесконечного», 1656) Валлис совершил огромный прорыв в исследованиях, на основе которых Ньютон и Лейбниц позднее открыли исчисление бесконечно малых величин.
Урок V особенно показателен. В нем Гоббс распекает Валлиса за описание «параллелограмма, чья высота бесконечно мала». «Это что, язык геометрии?» — вопрошает Гоббс. Основной проблемой Гоббса было то, что он был настолько предан геометрии, что был не в состоянии увидеть новые растущие возможности алгебры. Поэтому он мог со спокойной совестью, рассуждая об оригинальных методах исследования конических сечений, к которым прибегал Валлис, говорить, что тот настолько злоупотреблял использованием символов, что сам под конец в них запутывался и уже не имел терпения во всем этом разобраться{50}.
Свои уроки профессорам математики Гоббс заканчивает словами: «Так идите же своим путем, вы — невежественные и безжалостные клерикалы, Изахары, жалкие Vindices и Indices Academiarum» {51} . Сие послание, похоже, нуждается в расшифровке. Вольтер в одной из последующих глав даже еще убедительнее продемонстрирует, что блистание остроумием может сослужить хорошую службу в словесной дуэли. Изахар — библейский персонаж, в XVII веке это было имя нарицательное для наемников, которые поступались принципами ради денег. Vindices — множественное число от Vindex (лат. защитник, поборник), прозвища, которое заработал Сет Уорд в перебранке с Гоббсом. И наконец, Indices Academiarum значит «предатели академии» — тут Гоббс обыгрывает название книги Уорда Vindiciae Academiarum, в которой тот защищает Оксфорд и Кембридж от нападок Гоббса и его единомышленников, заявлявших, что эти университеты были оплотом схоластики, а также центром интеллектуального и научного застоя [5] .
5
Благодарю профессора Минтца за помощь в расшифровке.
Отбиваясь, Валлис придрался к неправильному использованию Гоббсом греческого слова stigma, значение которого «метка, клеймо, тавро». Валлис указывал, что Гоббс должен был писать stigme, что есть математический знак — бесконечная точка (безразмерная точка). Для Гоббса эти два слова были равнозначны в основном потому, что он не мог представить себе математическую точку. В то же время он полагал, что у отрезка должна быть определенная ширина, и это была основная трудность, с которой он сталкивался в.решении задачи о квадратуре круга.
Это не смутило Гоббса, и он ответил памфлетом «Заметки об абсурдных исследованиях в геометрии, просторечии, варварстве и неотесанной церковной политике Джона Валлиса и компании». Иными словами, научный диспут стал превращаться в пререкания по разным поводам, даже таким, как незначительные грамматические аспекты, причем оба ученых мужа считали необходимым продемонстрировать всю свою эрудицию. В этой связи Валлис ответил на латыни еще одной игрой слов: Hobbiani Puncti Dispunktio (Гоббсова неточечная точка»).
Гоббс прекратил перепалку в 1657 году, так как хотел закончить задуманную трилогию. Валлис тоже нашел своему времени более достойное применение и занялся написанием обстоятельного трактата на тему, которую сейчас мы назвали бы изобретением исчисления бесконечно малых величин. Этот труд был издан в том же году и назывался небезосновательно Mathesis Universalis («Общая математика»).
Какое-то время было затишье. Но в 1660 году Гоббс опять вернулся на ринг. Он подверг детальной критике труды Валлиса, написав пять диалогов между двумя собеседниками А и Б. В ответ на это Валлис заявил, что А и Б — это Томас и Гоббс, и их диалог не что иное, как дискуссия, в которой «Томас хвалит Гоббса, а Гоббс хвалит Томаса, и они оба хвалят Томаса Гоббса как третье лицо, не рискуя при этом быть обвиненными в самовосхвалении»{52}.
Гоббс дал ответ на это в 1666 году. Он стремился уязвить достоинство всех профессоров геометрии. С этой целью он заявил, что ему, по-видимому, придется сражаться «практически со всеми геометрами», и придумал фразу: «Либо я один сошел с ума, либо я один не сошел с ума, третьего не дано, разве что кто-либо докажет, что мы все сошли с ума»{53}.
В это время Лондонское Королевское общество начало издавать серию «Философские труды», которая, кстати, издается по сей день. Валлис воспользовался представившейся возможностью и в августе 1666 года опубликовал «Критику последнего труда мистера Гоббса De Principiis et Ratiocinatione Geometrarum», в которой развивает затронутую Гоббсом тему о безумии. Он утверждает, что вряд ли имеет смысл опровергать сказанное в книге Гоббса, так как если то, что сказал о себе Гоббс, правда, то тогда «опровержение будет либо бесполезно, либо бессмысленно. […] Потому что если это он безумен, то нет надежды, что его можно будет убедить разумными доводами, а если это мы безумны, то мы не в состоянии даже пытаться убедить его»{54}. Позже, комментируя заявление Гоббса, он писал: «Но почему изогнутость дуги должна называться углом обхвата? Я не нахожу другого объяснения, кроме того, что мистер Гоббс предпочитает называть гвоздем то, что другие именуют панихидой»{55}.
В 1669 году Гоббс, которому было уже за 80 и который, очевидно, был уже не в состоянии оценивать свои реальные возможности, опубликовал все свои работы по решению задачи о квадратуре круга и еще двух других не менее известных геометрических задач древнегреческого мира — о кубатуре сферы и геометрическом удвоении куба. И снова, как только эти работы были изданы, Валлис с неослабевающим упорством раскритиковал их в пух и прах. И снова завязалась письменная перепалка. Она продолжалась до 1672 года. После очередного хода Валлиса Гоббс не ответил. В 1678 году в возрасте 90 лет он закончил свой новый труд Decameron Physiologicum, состоящий из десяти диалогов на физические темы. И все-таки он не смог удержаться, чтобы не нанести ответный удар Валлису. На сей раз его внимания удостоилась статья о гравитации, которая вошла в книгу Валлиса De Motu (1669).