Шрифт:
Операция эквивалентности объединяет два высказывания, имеющие одинаковые значения истинности. Следовательно, будут эквивалентными, с одной стороны, истинные высказывания, а с другой - высказывания ложные. В противном случае высказывания считаются не эквивалентными. Исходя из этого легко построить таблицу истинности для эквивалентности, символом которой служит стрелка с противоположными концами (табл. 5).
Эквивалентность можно выразить на естественном языке словами "если и только если", и в таком виде она часто встречается в формулировке научных определений.
Кроме табличного определения логические операции (за исключением отрицания) можно определить через другие, с обязательным использованием отрицания. Действительно, применив табличный метод (табл. 6), можно убедиться, что выражения (х -> у) и (¬у ->¬x) будут эквивалентными, т.е. (х->у) <-> (¬у->¬х).
Каждая строка первой импликации и второй конверсной (обратной), полученной перестановкой отрицаний консеквента и антецедента первой, совпадают друг с другом. Следовательно указанные импликации будут эквивалентны.
С помощью таблиц истинности можно проверить, что и остальные логические операции можно определить через Другие две, причем второй операцией всегда будет отрицание. Например, дизъюнкцию можно выразить через конъюнкцию: (х у) <-> (¬x ¬у).
Способ установления истинности сложных высказываний, образованных из простых с помощью таблицы, был предложен американским логиком Ч.С. Пирсом и оказался весьма удобным. Как мы видели, этот способ основывается на комбинации значений истинности простых высказываний и последующего определения истинности сложных высказываний, образованных с помощью операций отрицания, конъюнкции, дизъюнкции и импликации. Например, когда имеется два высказывания, то число различных комбинаций из их значений истинности будет равно 4, при трех - 8, при четырех - 16, а следовательно, при заданном числе п оно равно 2n. Отсюда нетрудно заметить, что определение истинности сложного высказывания сводится в сущности к вычислению ее на основе значений истинности простых высказываний. Это впечатление усилится, если мы обозначим истину как 1, а ложь как 0 и будем их комбинировать, чтобы образовать отрицание, конъюнкцию, дизъюнкцию и т.д. В качестве иллюстрации вычислим значение истинности следующего выражения: (х у) -> (х z).
При некотором навыке процесс вычисления можно ускорить, обратив главное внимание на основную операцию, которая связывает две части формулы. В приведенном примере (табл. 7) достаточно заметить, что ложная импликация возникает при истинном антецеденте и ложном консеквенте. Отсюда легко определить возможные значения х и у в дизъюнкции (х у), а также значения х и z в конъюнкции (х z). Такой сокращенный способ вычисления истинности сложного высказывания основывается на установлении главной логической операции в рассматриваемой формуле.
Такие законы представляют собой тождественно истинные высказывания, т.е. высказывания, остающиеся истинными при любых значениях входящих в них простых высказываний. В справедливости этого утверждения можно убедиться опять-таки с помощью таблиц истинности. В принципе все тождественно истинные высказывания являются законами логики (или исчисления высказываний). Мы перечислим только основные из них.
• Закон тождества: если х, то х, т.е. х -> х.
• Закон упрощения: если х и у, то х, т.е. ху->х. То же самое относится к другому конъюнктивному члену: ху-> у
• Закон эквивалентности: если из х следует у, а из у следует х, тогда высказывания эквивалентны, т. е. x <-> у.
• Закон гипотетического силлогизма: если из х следует у, а из у следует z, то из х следует z, т.е.
((x -> y) (y -> z)) -> (x -> z)
• Закон двойного отрицания: если из х следует не-х, то отрицание последнего приводит к первоначальному высказыванию:
¬ (¬x) <-> x
• Законы О. де Моргана дают возможность переходить от конъюнкции к дизъюнкции и, наоборот, от дизъюнкции к конъюнкции. Они служат удобным средством для преобразования высказываний:
а) отрицание конъюнкции высказываний эквивалентно дизъюнкции из отрицаний конъюнктивных членов:
¬ (x y) <-> (¬x ¬y)
б) отрицание дизъюнкции эквивалентно конъюнкции отрицаемых членов дизъюнкции:
¬ (x y) <-> (¬x ¬y)
• Закон "поглощения": конъюнкция или дизъюнкция одинаковых высказываний эквивалентна самому высказыванию, т.е. повторяющийся член "поглощается":
(x x) -> x и (x x) -> x.
• Коммутативные законы для конъюнкции и дизъюнкции разрешают перестановку их членов:
(x y) <-> (x y) и (x y) <-> (y x).
• Ассоциативные законы для конъюнкции и дизъюнкции позволяют по-разному сочетать члены, т.е. по-иному расставлять скобки:
x (y z) ( <-> x y) z или x (y z) ( <-> x y) z.
• Закон контрапозиции разрешает прямую импликацию заменять обратной, в результате чего антецедент первой заменяется отрицанием консеквента второй, а ее консеквент - отрицанием антецедента. Проще говоря, при контрапозиции происходит перестановка членов импликации или их контрапозиция, но они берутся с отрицаниями: