Шрифт:
…Или не сможем – время покажет, как на самом деле устроен мир.
Сергей Попов. Истории из жизни звездного неба
Сергей Попов – Астрофизик, доктор физико-математических наук, ведущий научный сотрудник Астрономического института им. П. К. Штернберга (ГАИШ) МГУ.
Одному довольно известному политическому деятелю приписывается высказывание: «Искусство должно быть понятно народу». Но история показала, что искусство никому ничего не должно: оно идет своим путем – кто-то идет с ним, а кто-то не идет. На мой взгляд, с наукой в ХХ веке получилось как с искусством. Каждый из них шел своим путем, а в результате как современное искусство, так и современная наука многим сегодня непонятны. В искусстве я ничего не понимаю, но науку могу сделать немножко понятнее.
Если взять науку и искусство какого-нибудь XVII века, мы оказываемся на очень комфортном нулевом уровне понимания. Вы подходите к картине Боттичелли и видите, что это просто красиво. Подойти к произведению современного актуального искусства и сказать, что это красиво, можно в очень редких случаях. С наукой произошло примерно то же самое. Нет ничего удивительней, чем посмотреть в телескоп на Сатурн. Если не смотрели, то посмотрите. Или рассмотреть в микроскоп каких-нибудь инфузорий – это потрясающе. Это такой же нулевой уровень понимания, такой же условный «ах!».
История открытия колец Сатурна сама по себе очень интересна. Вообще говоря, кольца Сатурна в первые телескопы видно было плохо. Галилей [15] увидел, что Сатурн не круглый. Все думают, что Чебурашку придумал Успенский, но это был Галилей. Он посмотрел на Сатурн и увидел нечто похожее на Чебурашку – диск с ушами. Галилей был крайне рациональный человек: он никому не стал рассказывать об увиденном, но оставил зашифрованное сообщение, чтобы потом можно было отстоять приоритет. А когда через какое-то время с помощью более качественного телескопа снова посмотрел на Сатурн, чтобы получше разглядеть, – ничего не увидел и подумал, что померещилось. Еще через несколько десятилетий с помощью еще более мощных телескопов были открыты кольца Сатурна, но это сделал уже не Галилей. Дело в том, что на Сатурне, как и на Земле, есть времена года. В зависимости от угла мы видим кольца красивыми, как привыкли видеть на картинке, или с ребра – и тогда ничего не видно.
15
Галилео Галилей – 1564–1642 – Итальянский физик, математик и астроном. Важнейшее открытие Галилея – принцип относительности движения, который лег в основу всех последующих теорий устройства мироздания. Галилей первым наблюдал фазы Венеры, горы на Луне, спутники Юпитера, пятна на Солнце и кольца Сатурна.
В современной научной статье очень редко можно увидеть изображения (если там вообще есть изображения), которые бы вызвали пресловутый «ах!». Скорее это будет нечто больше похожее на «ууу…»: это непонятно и не всегда красиво.
Откуда пошла Вселенная
Начнем издалека – с краткой истории вселенной. Вселенная имеет конечный возраст. Идея эта очень интересна, и рационально мыслящие люди в нее не всегда верили. Под вселенной в данном случае я понимаю «вселенную с маленькой буквы» – то, что мы видим вокруг, что мы видим в телескопы сейчас и сможем увидеть в сколько-нибудь обозримом будущем. Всего этого когда-то не было. Это очень жесткое, абсолютно не философское, но наблюдательное утверждение. Сейчас мы в этом убедимся.
Представим, что вселенная бесконечна и заполнена звездами (это рациональная вселенная XIX века). Нигде нет никакого центра, мы не живем в центре скопления звезд. Если бы мы жили в центре мира, это было бы очень подозрительно, но мы живем в самом заурядном месте. Значит, куда бы мы ни посмотрели – взгляд рано или поздно упрется в звезду. Это легко понять: если завязать глаза и побежать даже через самый редкий лес, вы непременно найдете лбом свое дерево. Если ночью смотреть в заполненную звездами бесконечную Вселенную, где-то взгляд должен упереться в «лампочку» и все небо должно сиять, как поверхность звезды. Никакой ночной черноты не было бы. Отчего же мы, тем не менее, видим небо таким, какое оно есть, – яркие огоньки на черном фоне? Звезды где-то заканчиваются?
Правильный ответ в том, что звезды кончаются не в пространстве, а во времени – когда-то этих звезд не было. Вселенная при этом может быть бесконечна – это ничему не противоречит, просто звезды возникли какое-то время назад, и свет от далеких звезд до нас не дошел. Теперь мы знаем, какое это время – примерно 13,7 миллиарда лет назад.
Когда-то произошло нечто, что мы называем Большим взрывом [16] , в котором родилась наша Вселенная. После этого она начала расширяться и продолжает это делать по сей день. Мы это действительно знаем, это наблюдательный факт, а не результат интерполяций и экстраполяций. Сначала Вселенная была очень горячей и плотной – мы видим оставшееся от той эпохи излучение. Если включить телевизор и поймать пустой канал, на экране будет рябь. Заметный процент этой ряби и есть излучение далекой горячей Вселенной. Если бы вы это заметили до 1965 года и сделали правильный вывод, получили бы Нобелевскую премию.
16
Большой взрыв – согласно большинству современных космологических моделей так называется ранняя стадия развития Вселенной, сопровождающаяся расширением из плотного и горячего состояния. Сам термин «Большой взрыв» в настоящее время не имеет точного физического определения. Впервые это выражение употребил американский физик Фред Хойл в 1949 г. в следующем контексте: «Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».
В какой-то момент горячее вещество остыло и, как говорят физики, рекомбинировало. Это значит, что оно стало нейтральным: электроны прицепились к ядрам, которых было всего два – водород и гелий. Тогда наступили темные времена. Нейтральное вещество ничего не излучает, а звезд еще нет. Затем, после темных веков, наконец-то начали образовываться первые звезды. Во Вселенной были места, где плотность вещества была побольше, а в других местах плотность была поменьше. Туда, где плотность больше, притягивалось еще вещество и образовывались массивные комки. В этих комках было довольно много темного вещества. В астрономии оперируют своими единицами, в частности массой Солнца. Так вот, темного вещества в типичном комке было где-то на миллион масс Солнца, а обычного вещества – водорода и немножко гелия – было на сто тысяч масс Солнца. В таком облаке в современных моделях и возникает самая первая звезда. Звезды – первые объекты, которые загорелись во Вселенной.
Темное вещество – одна из ключевых космологических загадок. Сегодня считается, что это некий вид элементарных частиц. На роль этих непонятных частиц в теории есть несколько хороших кандидатов, но пока ни одного не поймали. Этих частиц по массе примерно раз в пять больше, чем обычного вещества.
Итак, в местах наибольшей плотности получаются облачка, где загораются первые звезды. Дальше процесс продолжается, и эти плотные облачка начинают сливаться друг с другом. Их слияние дает галактику. Не только наша, но и другие галактики состоят из сотен миллиардов звезд, из большого количества газа, пыли, темного вещества. Они образованы путем слияния более мелких галактик, а изначально даже не галактик, а облаков, где было буквально по одной звезде.