Шрифт:
Сила инерции, поднимающая воду вверх по стенкам ведра, вызвана его вращением относительно метрического поля, которое Эйнштейн теперь считал возрожденным эфиром. В результате он вынужден был признать, что общая теория относительности не требует исключения понятия абсолютного движения, по крайней мере относительно метрики пространства – времени26.
Это было не совсем отступление. Не было это и возвращением к концепции эфира из XIX века. Но это был более консервативный взгляд на Вселенную, указывающий на разрыв с радикализмом Маха, который когда-то Эйнштейн признавал.
Эйнштейну явно было некомфортно. Он пришел к выводу, что лучший способ избавиться от необходимости в эфире, существующем независимо от материи, – построить эту самую не дающуюся в руки единую теорию поля. Это был бы настоящий триумф! “Сгладились бы противоречия между эфиром и материей, – говорил он, – а вся физика стала бы завершенной системой взглядов”27.
Нильс Бор, лазеры и “случай”
Но наиболее явно переход Эйнштейна в середине жизни из стана революционеров в стан консерваторов проявился в его все более напряженных отношениях с квантовой теорией, приведшей в середине 1920-х годов к созданию совершенно новой механики. Он подозрительно относился к этой новой квантовой механике, большую часть времени тратил на поиск единой теории поля, которая объединила бы ее с теорией относительности и вернула определенность природе. Этот поиск длился всю вторую половину его научной карьеры и в какой-то степени сделал ее менее значимой. Когда-то он был бесстрашным первооткрывателем квантов. В начале века они с Максом Планком начали квантовую революцию, но в отличие от Планка Эйнштейн был среди тех немногих ученых, кто искренне верил в физическую реальность кванта – в то, что свет действительно представляет собой порции энергии. Иногда такие кванты ведут себя как частицы. Это неделимые элементы, а не часть континуума.
В 1909 году, выступая в Зальцбурге, Эйнштейн предсказывал, что физике предстоит примириться с дуальностью, то есть с тем, что свет можно считать и волной, и частицей. И на первом Сольвеевском конгрессе в 1911 году он решительно утверждал, что “эти нарушения непрерывности, которые нам так не нравятся в теории Планка, по-видимому, на самом деле должны существовать в природе”28.
По этой причине Планк, не готовый признать физическую реальность введенных им квантов, написал об Эйнштейне в рекомендательном письме для избрания в Прусскую академию: “Возможно, высказав гипотезу о квантах света, он зашел слишком далеко”. Другие ученые тоже поддержали Планка в неприятии квантов Эйнштейна. Вальтер Нернст назвал эту идею “вероятно, самым странным, о чем он когда-либо слышал”, а Роберт Милликен – “полностью несостоятельной” – даже после того, как сам в своей лаборатории проверил точность предсказаний теории Эйнштейна29.
Новый этап квантовой революции начался в 1913 году, когда Нильс Бор предложил свою исправленную модель атома. Бор, блестящий, но застенчивый и невразумительно выражавшийся молодой датчанин, был шестью годами моложе Эйнштейна. Он был знаком как с немецкими работами по квантовой теории Планка и Эйнштейна, так и с работами по структуре атомов англичан Дж. Дж. Томсона и Эрнеста Резерфорда. “В то время квантовая теория была немецким изобретением, вряд ли вообще проникшим в Англию”, – вспоминал Артур Эддингтон30.
Бор отправился учиться к Томсону в Кембридж. Но у невнятно бормочущего датчанина и неразговорчивого британца возникли трудности в общении. Поэтому Бор перебрался в Манчестер работать с более коммуникабельным Резерфордом, автором модели атома, где крошечные отрицательно заряженные электроны вращались по орбитам вокруг положительно заряженного ядра31.
Усовершенствование, сделанное Бором, основывалось на том, что вращающиеся электроны не сваливаются на ядро, испуская излучение непрерывного спектра, как то предсказывает классическая механика. В новой модели Бора, основанием которой послужило изучение атома водорода, электрон, находясь в состояниях с дискретными энергиями, вращается вокруг ядра по определенным разрешенным орбитам. Атом может поглощать энергию излучения (такого как свет) только маленькими порциями, что приводит к перебрасыванию электрона с орбиты, на которой он находился, на другую, более высокую разрешенную орбиту. Точно так же атом может испускать излучение только порциями, что приведет к падению электрона вниз на другую разрешенную орбиту.
При переходе с одной орбиты на другую электрон совершает квантовый скачок. Другими словами, это отдельный, проходящий с нарушением непрерывности переход с одного уровня на другой без возможности отклониться и оказаться где-то между уровнями. Бору удалось показать, что его модель объясняет положение спектральных линий излучения атома водорода.
Услышав об этой теории, Эйнштейн пришел в восхищение, но он и несколько завидовал Бору. Один ученый описывал это Резерфорду так: “Он сказал мне, что однажды нечто подобное приходило и ему в голову, но он не осмелился это опубликовать”. Позднее Эйнштейн объявил, что “открытие Бора – музыка высших сфер в области мысли”32.
Основываясь на модели Бора, Эйнштейн в 1916 году написал серию статей, наиболее существенная из которых, “К квантовой теории излучения”, вышла из печати в 1917 году33.
Эйнштейн начал с мысленного эксперимента. Он представил себе камеру, в которой есть облако атомов, омываемых светом (или каким-либо другим электромагнитным излучением). Затем Эйнштейн комбинирует модель атома Бора с теорией квантов Макса Планка. Если каждое изменение электронной орбиты соответствует поглощению или испусканию одного кванта света, то – престо! – отсюда следует новый, более простой способ для получения формулы Планка, объясняющей закон излучения абсолютно черного тела. Эйнштейн хвастал Мишелю Бессо: “Меня осенила блестящая идея относительно поглощения и испускания излучения. Она заинтересует тебя. Удивительно простой вывод, я бы сказал, именно вывод формулы Планка. Абсолютно квантовая история”34.
Атомы спонтанно испускают излучение. Но, предполагает Эйнштейн, этот процесс можно стимулировать. Упрощенно это можно себе представить так: предположим, что атом, поглотив фотон, уже оказался в состоянии с более высокой энергией. Если теперь его возбудить с помощью другого фотона определенной длины волны, это может привести к испусканию двух фотонов одной и той же длины волны и одинаковой поляризации.
Открытие Эйнштейна было несколько сложнее. Предположим, имеется газ атомов, в который накачивается энергия, скажем, с помощью электрических импульсов или света. Энергия будет поглощаться большим числом атомов, которые переходят в состояния с более высокой энергией и начинают испускать фотоны. Эйнштейн утверждал, что присутствие облака фотонов делает более вероятным испускание фотона той же длины волны и того же направления, что и другие фотоны облака35. Прошло почти сорок лет, и на основе этого процесса, названного вынужденной эмиссией, были изобретены лазеры. Это название составлено из первых букв английских слов light amplification by the stimulated emission of radiation – “усиление света путем вынужденной эмиссии излучения”.