Вход/Регистрация
Эйнштейн. Теория относительности. Пространство - это вопрос времени.
вернуться

Ласерна Давид Бланко

Шрифт:

РИС. 13

РИС. 14

Наблюдатели считают, что скорость мяча внутри метательной машины уже равна скорости движения корабля и. После выстрела правая стена смещается, отдаляясь от мяча со скоростью u потому мяч должен пройти большую дистанцию. Поэтому несмотря на то, что наблюдатели системы G отметят то же время, что и наблюдатели системы D пройденное расстояние и скорость мяча для них будут разными:

L+u•(t2– t1) где u•(t2– t1) расстояние, на которое отодвигается правая стена в то время, пока мяч находится в воздухе.

Если мы отвлечемся от существования корабля и будем заниматься только мячом, то увидим, что со скоростью v + u он за период времени t2 – t1 пролетит расстояние

(v + u)•(t2– t1).

Обе величины должны быть равны между собой:

L + u • (t2 – t1) = (v + u) • (t2 – t1).

Получим знакомое уравнение для вычисления длины трюма:

L = v•(t2– t1).

Можно сделать вывод о том, что с точки зрения наблюдателей на причале мяч должен пройти большее расстояние, поскольку стена от него отдаляется, но при этом он летит с большей скоростью, так как к его скорости прибавляется скорость корабля, поэтому оба эффекта компенсируют друг друга.

Электромагнитный эксперимент

Заменим метательную машину фонарем, а мяч – лучом света (и опять мы имеем дело с электромагнитным излучением).

Единственный элемент, общий для систем G и D – величина скорости света. Все хронометры, участвующие в эксперименте, произведены на одной фабрике, но только два из них в одной и той же системе отсчета показывают одно и то же время. Для того чтобы перевести пространственные или временные координаты из одной системы в другую, необходимо прибегнуть к преобразованиям Лоренца.

Версия наблюдателей находящихся в трюме корабля

Как и в механическом эксперименте, А’ отмечает тот момент, когда световой луч выходит из фонаря, а В’ – момент, когда луч достигает противоположной стены (рисунок 15). Для них:

L’ = c-(t'2– t'1).

Версия наблюдателей на причале

С причала наблюдатели видят, как отдаляется правая стена, световой луч при этом по-прежнему движется со скоростью с (рисунок 16). Они замечают, что прежде чем достичь стены, луч преодолел не только длину трюма, но и дистанцию, пройденную кораблем в период времени между t1 и t2 (рисунок 17):

L +u-(t2– t1).

С другой стороны, если оставить корабль в стороне, за временной интервал (t2 – t1) свет проходит расстояние:

c•(t2– t1)=x2 -x1

Приравняв выражения друг к другу:

L + u • (t2– t1) = с • (t2– t1)=х2- х1

и применив формулу преобразований Лоренца, мы получаем поразительный результат:

Поскольку скорость корабля меньше скорости света (u < с), то фактор бета меньше t, а значение L меньше, чем L'. То есть для наблюдателей в системе G трюм корабля в длину меньше, чем для наблюдателей в системе D. Это и есть так называемое Лоренцево сжатие.

РИС. 15

РИС. 16

РИС. 17

Математическое выражение сжатия Лоренца

Ниже мы показываем, как преобразования Лоренца применяются в расчете сжатия. У нас есть два математических выражения того расстояния, которое проходит свет:

L + u•(t2– t1),

с•(t2– t1)=x2 -х1.

Приравняем их:

L + u•(t2– t1 ) = c•(t2– t1 )=x2- x1 L=x2 -x1 -u-(t2– t1 ).

Уравнение можно упростить, если немного изменить обозначения:

Тогда выражение, найденное для L, сокращается до:

  • Читать дальше
  • 1
  • ...
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: