Ласерна Давид Бланко
Шрифт:
Милева была, вероятно, самой большой любовью его жизни. В первом браке он искал радостей и для тела, и для души. В письмах к Эльзе чувствуется не только его влюбленность, но и некоторые опасения: «Брак не перестает меня пугать совсем не из-за отсутствия истинной привязанности!» Возможно, Милева была идеальным объектом любви для двадцатилетнего молодого человека, в то время как Эльза – для сорокалетнего. Кузина дарила ученому спокойствие и мир и довольствовалась менее глубокими чувствами. И даже если между ними не было страстной любви, взаимная забота и поддержка были однозначно.
Мне нравится, что моя нынешняя жена, в отличие от моей первой супруги, ничего не смыслит в науке.
Из письма Эйнштейна к его ученице Эстер Саламан
Эйнштейн постепенно получил признание в мировом научном сообществе. Ученый жаловался: «Чтобы наказать меня за мое презрение к авторитетам, судьба сделала авторитетом меня самого».
Во время развода Эйнштейн обещал Милеве: «Никогда не откажусь жить один – я себя чувствую при этом невыразимо счастливым». Однако прошло меньше четырех месяцев после развода, и он уже был женат снова.
Паулина восприняла развод сына с Милевой так, словно выиграла в лотерею. «Как бы радовался бедный папа, если бы мог увидеть это!» Однако всего год спустя у матери Эйнштейна нашли рак желудка. Еще одним ударом для нее стало отдаление Альберта.
В 1804 году баварский астроном Иоганн Георг фон Зольднер (1776-1833), основываясь на корпускулярной теории Ньютона, согласно которой свет состоял из частиц, чувствительных к силе тяжести, сформулировал следующее любопытное утверждение: «Световой луч, проходящий рядом с небесным телом, под воздействием силы его притяжения описывает гиперболу, вогнутую в противоположную сторону от тела, притягивающего луч». Фон Зольднер рассчитал, что рядом с Солнцем угол отклонения (или угол пертурбации) составит 0,84 секунды. Заметно ли такое отклонение с Земли? «При наблюдении за неподвижными звездами, ближайшими к Солнцу, это явление следовало бы принять к сведению. Однако, поскольку такое наблюдение с Земли невозможно, мы можем не учитывать это отклонение». В XIX столетии корпускулярная теория света уступила место волновой теории, и предположение фон Зольднера, которое было невозможно проверить средствами эпохи, довольно скоро ушло в историю.
В июне 1911 года, отталкиваясь от различных научных догадок, Эйнштейн в своей статье «О влиянии силы тяжести на распространение света» вслед за фон Зольднером пришел к той же идее и указал практически тот же угол отклонения: 0,83 секунды. Однако он сделал диаметрально противоположный зольднеровскому вывод:
«Так как звезды соседних с Солнцем частей неба делаются видимыми при полных затмениях, то это следствие теории сравнимо с опытом. […] Было бы крайне желательно, чтобы астрономы заинтересовались поставленным здесь вопросом даже в том случае, если бы предыдущие рассуждения казались недостаточно обоснованными или рискованными».
Описание наблюдений Кроммелина в Собрале (Бразилия), напечатанных в «Иллюстрированных лондонских новостях» 22 ноября 1919 года.
Три года спустя после публикации статьи Эйнштейна в «Анналах физики», 21 августа 1914 года, состоялось полное солнечное затмение, во время которого стало возможным проверить теорию Эйнштейна.
Молодой астроном из Висбадена Эрвин Фрейндлих (1885- 1964) решил принять участие в этой проверке, но его экспедиции в Крым помешала Первая мировая война. 1 августа, сразу же после объявления войны, в России была арестована группа немецких астрономов, принятых за шпионов. «Мой хороший друг астроном Фрейндлих,- жаловался Эйнштейн в письме к Паулю Эренфесту, – вместо того чтобы проводить в России опыты, связанные с затмением Солнца, на своем опыте проверит, что такое тюрьма в этой стране». Эйнштейн тогда не знал, что царская Россия оказала ему услугу: его теория еще не была готова выдержать проверку, и наблюдения Фрейндлиха вместо того, чтобы подтвердить принципы относительности, опровергли бы их.
Эйнштейн доработал свое уравнение и в уже упоминавшемся докладе на конференции 25 ноября 1915 года сделал второй подсчет, результаты которого не совпадали с выводами фон Зольднера: угол пертурбации был равен 1,7 секунды. Эта разница стала отличным поводом для сопоставления релятивистского взгляда на силу тяжести и классического ньютоновского. Артур Эддингтон (1882-1944), глава обсерватории в Кембридже, проверил данные теории на практике во время затмения 29 мая 1919 года:
«Эффект искривления сильнее всего заметен для света звезд, которые находятся ближе всего к Солнцу, поэтому единственная возможность произвести наблюдения – это воспользоваться временем полного затмения. Даже в этом случае большое количество света выходит за пределы солнечного ореола и распространяется далеко от диска. Астроном, наблюдающий за звездами, скажет, что самый благоприятный день для расчета отклонения луча света – 29 мая. В этот день Солнце, двигаясь по своей орбите, проходит через звездные скопления различной плотности; 29 мая оно находится посреди исключительно ярких звезд – в скоплении Гиад, лучшей доступной области звездного неба».
Кембриджский университет и Королевское астрономическое общество для наблюдения за затмением из Северного и Южного полушарий организовали две научные экспедиции: одна направилась на юг, в сторону бразильского города Собраль, другая – на север, к острову Принсипи в Гвинейском заливе.
Северная экспедиция чуть не сорвалась из-за плохой погоды. В день затмения небо было плотно затянуто тучами и с самого утра лил дождь. Днем, в половину второго, появились первые проблески солнца, но облака все еще нависали тяжелой пеленой, скрывая сцену, на которой теория относительности должна была пройти испытание. Как только лунная тень упала на Солнце, Эддингтон в исступлении стал фотографировать небо. У него было всего пять минут, и в эти пять минут солнце порой скрывалось за облаками. Из шестнадцати снимков скопления Гиад получились только два. Эддингтон, сгорая от нетерпения, приступил к расчетам. А что же произошло в Собрале? Как рассказывал Эндрю Кроммелин, глава бразильской экспедиции, погода в Южном полушарии также заставила ученых понервничать, «но облака разошлись рядом с Солнцем как раз вовремя, и в течение четырех или пяти минут затмения небо вокруг Солнца оставалось полностью ясным».
Анализ Эддингтона подтвердил выводы релятивистов: он использовал для расчета фотографические снимки звезд из того же скопления Гиад, однако сделаны они были летом в Англии, когда Солнце уже не вызывало отклонение их света. Астроном подтвердил: 29 мая угол отклонения составил 1,7 секунды.
РИС. 1
РИС. 2
Солнце заставляет лучи света, проходящие рядом с ним, отклониться от своей траектории, и из-за этого кажется, что некоторые звезды занимают на небе другое положение, нежели на самом деле, как это показано на рисунке 1. Угол отклонения легко рассчитывается при наложении двух снимков одной и той же звездной области друг на друга, сделанных с учетом и без учета затмения (рисунок 2). Каждая стрелка соединяет действительное положение звезды (начало стрелки) и кажущееся (острие стрелки).