Шрифт:
Эксперименты, проведенные в период с 1997 по 2007 год, показали, что ситуация действительно обстоит именно так – как будто субатомные частицы, полученные вместе, объединены ЭПР-парадоксом. Если наблюдаемая частица случайным образом начинает двигаться по одной из возможных траекторий, то ее частица-близнец совершает такое же действие в тот же момент, даже если между ними пролегает существенное расстояние.
В 1997 году швейцарский исследователь Николя Жизен впервые запустил шар в этом квантовом боулинге, поставив просто ошеломляющий эксперимент. Группа ученых под его руководством получила запутанные фотоны (частицы света) и запустила их по оптоволоконным кабелям на расстояние более 11 километров. Одна из этих частиц попадала в интерферометр, где могла пойти по одной из двух траекторий, определявшихся случайным образом. Жизен показал, что какой бы путь ни выбрал этот фотон, его близнец мгновенно сворачивал на второй путь.
Необходимо подчеркнуть, что это происходило мгновенно. Реакция второго фотона не задерживалась даже на тот промежуток времени, который требуется на преодоление 11 километров со скоростью света (около 26 миллисекунд). Изменение траектории второго фотона происходило не более чем через три десятимиллиардных доли секунды после того, как траекторию менял первый фотон – такова была предельная разрешающая способность применявшегося оборудования. Было признано, что эти изменения траектории происходят одновременно.
Такой результат полностью согласуется с законами квантовой механики, но кажется невероятным даже самим физикам, поставившим этот эксперимент. Он подтверждает поразительную теорию о том, что запутанная частица-близнец мгновенно реагирует на действие или изменение состояния второй запутанной частицы, причем расстояние между двумя такими частицами не имеет значения.
Описанный факт оказался настолько непостижимым, что некоторые скептики сразу принялись искать лазейку, которая позволила бы его опровергнуть. Наиболее веский контраргумент сводился к «недостаточной точности детектора». В соответствии с ним во всех проведенных на данный момент экспериментах не удавалось отловить достаточного количества фотонов-близнецов. Критики полагали, что аппаратура улавливает слишком незначительное количество фотонов, поэтому можно утверждать, что наблюдаемая синхронность характерна далеко не для всех из них. Однако этот контраргумент был фактически снят в результате нового эксперимента, проведенного в 2002 году. В статье, опубликованной в журнале Nature, были описаны результаты работы исследователей из Национального института стандартов и технологий, выполненной под руководством доктора Дэвида Вайнленда. Применив запутанные пары ионов бериллия и высокоточный детектор, они убедительно доказали, что частица действительно мгновенно реагирует на изменения в действиях частицы-близнеца.
Некоторые ученые полагали, что частица сообщает своему близнецу какой-то новый, ранее неизвестный вид силы или взаимодействия, и на это требуется нулевое время. Однако Вайнленд просто заметил одному из авторов: «Жуткое дальнодействие действительно существует». Конечно же, он понимал, что такая формулировка ничего не объясняет.
Большинство физиков полагают, что скорость света, считающаяся принципиально непреодолимой в соответствии с теорией относительности, так и останется предельно возможной скоростью. Ведь никто не сможет воспользоваться ЭПР-корреляцией для передачи информации, поскольку поведение частицы-передатчика всегда будет случайным. Но новейшие исследования в этой области направлены на решение практических, а не философских проблем. Требуется научиться использовать это причудливое поведение частиц для создания сверхмощных квантовых компьютеров. По словам самого Вайнленда, такие компьютеры должны «максимально полно использовать странные принципы квантовой механики».
Как бы то ни было, все эти эксперименты, проведенные за минувшее десятилетие, со всей очевидностью доказывают ошибочность убеждений Эйнштейна о «локальности». Иными словами, великий физик был не прав, когда утверждал, что ни одна реальная сущность не может воздействовать на другую сущность со сверхсветовой скоростью. Напротив, наблюдаемые сущности находятся в каком-то поле (в рамках биоцентризма оно называется «полем разума»), не ограниченном законами теоретического пространства-времени, описанного Эйнштейном в начале прошлого века.
Не следует полагать, что, когда биоцентризм апеллирует к квантовой теории как к одной из главных точек опоры, он затрагивает всего один аспект квантовых феноменов. Сформулированная в 1964 году теорема Белла, которая с тех пор не раз была подтверждена экспериментально, не оставляет камня на камне от построений Эйнштейна и других физиков, надеявшихся, что локальность может сохраняться.
До Белла допускалась (со временем все более призрачная) возможность, что в мире существует локальный реализм – то есть самодостаточная объективная Вселенная. Так, до появления работ Белла многие ученые упорно придерживались мнения, существовавшего на протяжении тысячелетий и сводившегося к следующему: физические состояния существуют и до того, как будут измерены. В первой половине прошлого века считалось общепризнанным, что элементарные частицы обладают определенными свойствами и параметрами, не зависящими от акта измерения. Наконец, когда Эйнштейн продемонстрировал, что обмен информацией не может происходить быстрее скорости света, сложилось и такое убеждение: если два наблюдателя существенно удалены друг от друга, то измерения, выполненные одним из них, не повлияют на измерения другого.
От всех вышеперечисленных убеждений наука уже решительно отказалась.
Кроме вышеуказанного, в квантовой теории есть еще три важнейших аспекта, которые объяснимы с точки зрения биоцентризма, а в других контекстах кажутся парадоксальными. Чуть ниже мы остановимся на этих аспектах очень подробно, а пока давайте с ними просто ознакомимся. Во-первых, это описанная выше квантовая запутанность. Она представляет собой настолько тесную связь между двумя объектами, что они всегда и мгновенно действуют как одно целое, даже если находятся в разных галактиках. Эта таинственная связь более ярко проявляется в классическом эксперименте с двумя щелями.
Во-вторых, это принцип дополнительности. В соответствии с ним элементарные частицы могут проявлять себя либо одним способом, либо другим, но никогда – обоими способами одновременно. Вариант проявления частицы зависит от того, что делает наблюдатель. Действительно, объект не существует в определенной точке пространства и не совершает конкретного движения. Лишь знания и действия наблюдателя определяют появление частицы в конкретном месте и ее конкретные действия. Существует много пар таких дополнительных свойств. Объект может пребывать в состоянии частицы или волны, но не в двух этих состояниях одновременно. Объект может либо находиться в конкретном месте, либо двигаться в определенном направлении – но не то и другое сразу. Реальность объекта целиком зависит от наблюдателя или от сути эксперимента.