Шрифт:
Оказывается, для комет такого типа, описываемого математической моделью, разработанной в статье [1066], характерна ХАОТИЧНОСТЬ ДИНАМИКИ. Одним из наиболее чувствительных параметров орбиты кометы является время прохождения через перигелий, то есть время возвращения (период) кометы. В частности, период кометы Галлея – СЛУЧАЙНАЯ ВЕЛИЧИНА с экспоненциально нарастающим разбросом.
Но «идеальная Китайская Синусоида» в поведении периода кометы Галлея не могла появиться в результате СЛУЧАЙНОГО ЭКСПЕРИМЕНТА.
Нам скажут: хотя и редко, но чудеса все-таки случаются. Конечно, ответим мы. Например, обезьяна, случайно тыкая в клавиши пишущей машинки, может напечатать, – причем без грамматических ошибок, – осмысленный текст. Например, какой-нибудь многотомный классический роман. Но вероятность этого события ничтожно мала, хотя и не равна нулю. И вероятность появления «китайской синусоиды» в случайной серии экспериментов тоже ненулевая. Но она настолько исчезающе мала, что ею можно смело пренебречь, точно так же, как и вероятностью того, что какая-нибудь обезьянка лихо напечатает без пропусков и ошибок четыре тома романа «Война и Мир».
Подозрительно высокая частота маловероятных событий в скалигеровской истории
Здесь уместно сделать одно общее замечание о маловероятных событиях в истории. Как H.A. Морозову, так и нам, приходилось неоднократно слышать следующее возражение. Как один из примеров, процитируем наиболее квалифицированного оппонента – математика Б.А. Розенфельда, опубликовавшего статью «Математика в трудах H.A. Морозова» [583], с. 129–138. Комментируя обнаруженные H.A. Морозовым странные и МНОГОЧИСЛЕННЫЕ совпадения в традиционной истории: совпадения потоков длительностей правлений в династиях разных эпох, совпадения астрономических событий и т. д., Б.А. Розенфельд писал:
«Морозов подсчитывал вероятность тех или иных совпадений, и, найдя что эта вероятность чрезвычайно мала, делал вывод о невозможности этих совпадений. Такого рода рассуждения СОВЕРШЕННО НЕПРАВОМЕРНЫ (? – Авт.), так как теория вероятностей является наукой о массовых, а не о единичных явлениях, и ФАКТИЧЕСКИ МОГУТ ПРОИСХОДИТЬ СОБЫТИЯ, ВЕРОЯТНОСТЬ КОТОРЫХ СКОЛЬ УГОДНО БЛИЗКА К НУЛЮ» [583], с. 137.
Б.А. Розенфельд прав в своем последнем высказывании. События с очень малой вероятностью действительно происходят. Но если вы хотите, чтобы некое редкое событие произошло, нужно предъявить большое количество испытаний. А именно, – порядка величины, обратной значению вероятности. Поэтому важна не только вероятность события, но и КОЛИЧЕСТВО ИСПЫТАНИЙ, в которых оно происходит.
Для этого и существует наука – математическая статистика, которая все это учитывает. И рассуждения H.A. Морозова с точки зрения математической статистики вполне правомерны.
Для неспециалистов в теории вероятности, говоря на качественном уровне, отметим, что часто выдвигаемое нам возражение типа предыдущего: «Да, это событие маловероятно, но все-таки произошло в силу случайных причин», – НЕ МОЖЕТ ВЫДВИГАТЬСЯ СЛИШКОМ ЧАСТО. Его можно высказать один раз, два раза, ну – три раза. По конкретному поводу. Но когда оно начинает выдвигаться ОЧЕНЬ ЧАСТО и относится не к одному-двум, а к ЦЕЛОМУ КЛАССУ, СЕРИИ ПОРАЗИТЕЛЬНЫХ СОВПАДЕНИЙ В ТРАДИЦИОННОЙ ИСТОРИИ, ТО ОНО ПОЛНОСТЬЮ ТЕРЯЕТ СВОЙ СМЫСЛ.
И в случае с кометой Галлея мы, скорее всего, услышим от некоторой части наших читателей то же возражение: «китайская синусоида появилась случайно». Мол, событие хоть и маловероятно, но вероятность его появления все-таки не равна нулю, а потому оно могло произойти.
Но это высказывание будет всего лишь ОЧЕРЕДНЫМ В ДЛИННОЙ ЦЕПИ подобных возражений. Не слишком ли часто в скалигеровской истории происходят события, вероятность которых практически равна нулю? Каждое такое возражение, взятое по отдельности, имеет смысл. Но когда они выстраиваются в ДЛИННЫЙ РЯД, то получающаяся последовательность возражений ОБЕССМЫСЛИВАЕТСЯ.
И еще раз подчеркнем следующее важное обстоятельство. Почему все подобные «массовые серийные совпадения» в истории начинаются лишь ранее XVI века н. э.? Почему их нет в последние 400 лет? Что случилось с историей? Почему она вдруг только в последние 400 лет СТАЛА ПОДЧИНЯТЬСЯ ЗАКОНАМ ТЕОРИИ ВЕРОЯТНОСТЕЙ? А ранее этого времени якобы упорно игнорировала законы математической статистики?
5.3. О комете Карла V
Яркий пример того, как при помощи китайского кометного списка можно «подтвердить» что угодно, дает нам известная комета Карла V. Она появилась в 1556 году, «была из крупных и такой же описана она у китайцев. А за 292 года до нее в 1264 году была такая же большая комета, перед смертью папы Урбана… Она же описана в "Летозаписи" (Ше-Ке) и Пенгрэ по ней нашел, что ее орбита очень близка к орбите кометы Карла V… Он счел обе кометы за ту же самую комету, имеющую период возвращения к Солнцу около 292 лет. По этой теории ее приходилось искать еще и в 972, и в 680, и в 388, и в 96 году нашей эры» [544], т. 6, с. 157–158.
Надо ли говорить, что ученые успешно нашли в китайском списке все нужные даты. А в европейском – все, кроме одной, самой ранней. Еще раз напомним, что удивляться этому не следует. Списки комет настолько плотны, а описания настолько туманны, что «найти» можно на любой вкус.
H.A. Морозов справедливо писал: «Казалось бы здесь, так же, как и у кометы Галлея, все прекрасно: и китайские и европейские записи "подтверждают" периодичность возвращений кометы Карла V, а сама комета Карла V в свою очередь подтверждает правдивость этих записей вплоть до начала нашей эры… Но вскоре вышло и неожиданное разочарование. Когда попробовали по этому же 292-летнему периоду предсказать ее возвращение около 1858 года… то она не явилась не только к указанному сроку, НО И ДО СИХ ПОР (не вернулась – Авт.) и вместе с тем пошатнулись и все ее предполагаемые древние "удостоверения" китайскими записями» [544], т. 6, с. 159.