Шрифт:
В другой серии опытов определяется скорость хрононов, испускаемых глазами экспериментатора, который бросает взгляд на Солнце. В момент посылки сигнала включается секундомер. При возвращении сигнала, отраженного от Солнца, рамка опрокидывается и секундомер выключается. Рамка срабатывает, когда после посылки луча взгляд переводят на ее верхнюю точку, при этом надо не двигаться. Среднее расстояние от Земли до Солнца равно 149,67?106 км, обычный свет проходит это расстояние туда и обратно за 16,6 мин, то есть за 1000 с. Хрононы глаз человека преодолевают это расстояние за разное время - все зависит от энергетики человека.
Мои опыты показывают, что рамка обычно опрокидывается через 6-7 с, что соответствует 166-142 скоростям света. Зимой это время несколько возрастает. Оно зависит также от состояния организма. В опыте рамка "работает" (опрокидывается) столько времени, сколько выдерживают глаза смотреть на Солнце. Их можно защитить очками. Измерения можно проводить также в закрытом помещении, глядя через стены и крышу здания, или даже ночью, бросая взгляд сквозь Землю, если только известно, в каком направлении в данный момент располагается Солнце.
Аналогичным способом хронолокируются ионосфера Земли, Луна, звезды, галактики и т.д. При этом мозг программирует соответствующие свойства излучаемых хрононов. О диапазоне изменения скоростей, запрограммированных мозгом, можно наглядно судить, если зарядить глазами навеску воды, глядя сквозь нее на стену коридора. В этом случае скорость хрононов оказалась равной в среднем 277 м/с, что неизмеримо меньше случая, когда глазами локируется Солнце.
Теперь становится понятным эксперимент Н.А. Козырева, который наводил телескоп на точки неба перед звездой, в направлении ее полета, и наблюдал целый ряд эффектов, характерных для хронального явления, например изменение частоты колебаний кварца. Очевидно, что эти эффекты производились хрононами разных сверхсветовых скоростей, ибо движущаяся звезда фактически всегда расположена впереди своего видимого в данный момент изображения. В тех случаях, когда накрытый листом дюраля телескоп направлялся на видимое изображение звезды, наблюдались те же эффекты, при этом работали увлеченные фотонами хрононы, свободно проникающие сквозь металлическую крышку телескопа. Наконец, если телескоп навести на точки неба за звездой, то возникнут аналогичные эффекты, вызванные хрононами досветовой скорости.
При локации Солнца зависимость скорости хрононов от энергетики человека я использую для определения последней - это один из вполне реальных способов судить о хрональных свойствах личности. При этом взгляд на Солнце бросает испытуемый, экспериментатор оперирует рамкой, а помощник - секундомером. Мне известны случаи, когда измеренная таким способом скорость хрононов получалась ниже световой.
Факт перемещения хрононов с определенными скоростями свидетельствует о наличии у них кинетической степени свободы. Это означает, что хрононы имеют в своем составе порции (кванты) метрического вещества, то есть обладают определенными размерами и массой. Наличие одновременно хрональной и метрической степеней свободы делает хрононы яркими представителями хронально-метрического мира [ТРП, стр.358-361].
13. Дифракция хрононов.
О существовании у хрононов вибрационной степени свободы можно говорить, например, тогда, когда, обладая квантами метрического вещества, они проявляют также волновые свойства, ибо последние суть непременные следствия взаимного наложения двух самостоятельных явлений - метрического и вибрационного. Волновые свойства легко наблюдать при дифракции, например, если частицы проходят сквозь узкую щель. Соответствующий опыт выглядит следующим образом.
Простейший дифрактометр, не нуждающийся в какой бы то ни было оптике, состоит из вертикального экрана 2 со щелью шириной d и основания 3, на котором из центра щели проведены прямые линии под разными углами ? к направлению на источник хрононов 1, начиная от 0 (осевая линия) и кончая 90° (рис. 14). Для удобства использования на основании 2 вместо градусов нанесены их синусы.
Пучок хрононов, идущий от источника, огибает края щели и образует обычную дифракционную картину: прямо напротив ; щели, на осевой линии (? = 0) наблюдается максимальная интенсивность излучений - это центральная полоса, центральный максимум, за ним следуют вторичные максимумы уменьшающейся интенсивности. Максимумы чередуются с линиями нулевой интенсивности, которые подчиняются следующей закономерности:
sin ? = ? k (?/d) (310)
где k = 1, 2, 3, ... ; ?
– длина волны, описываемой хрононами.
Мы будем интересоваться только максимумами, именно они фиксируются рамками. Первый вторичный максимум расположен на расстоянии (3/2)?(?/d) от осевой линии, расстояние между остальными максимумами равно ?/d , поэтому расчетная формула для определения длины волны, которую описывают хрононы, приобретает вид.
? = sin ? ? d/( k + 0,5) (311)
Здесь под k надо понимать порядковый номер вторичного максимума излучения.
Дифрактометр можно изготовить из картона, экран 2 надо обклеить полиэтиленом, ибо он не пропускает хрононы. С целью регулировки исходную щель целесообразно сделать широкой, а экран снабдить горизонтальными прорезями, в которых скользили бы два маленьких полиэтиленовых экранчика, перекрывающих эту щель до нужного размера d .
Подбором d находится расстояние ?/d между вторичными максимумами, удобное для применения рамки: с уменьшением d это расстояние возрастает. Размеры экрана и основания могут не превышать стандартного листа писчей бумаги.