Вход/Регистрация
Термодинамика реальных процессов
вернуться

Вейник Альберт Иозефович

Шрифт:

Из уравнения (328) видно, что изменение (приращение) хронала тем выше, чем сильнее изменяются (наращиваются) квадраты скорости тела и частот его вращения и колебания. В свою очередь приращения скорости и частот представляют собой соответствующие ускорения. Следовательно, на приращение хронала, а значит, и на приращение хода реального времени (см. второе равенство (237)) очень большое влияние оказывают разного рода ускорения системы. Напомню, что в данном случае приращение хода реального времени d? есть именно ускорение этого хода, а не малая длительность d?. Все сказанное легче себе представить, если левую и правую части уравнения (328) разделить на малый отрезок времени d? (или dt), для наглядности то же самое можно проделать и со вторым равенством (237).

Весьма интересно также уравнение (329). Согласно этому уравнению, высоким скоростям движения и частотам вращения и колебания тела отвечают большие значения хронала и малые значения хода реального времени (см. первое равенство (237)). При малых скоростях и частотах, наоборот, хронал невелик, а скорость хода реального времени высока.

Применим изложенные соображения к процессу соударения двух тел - первого и второго, на которых реальное время течет с разными скоростями. С помощью уравнений (328) и (329) мы теперь вполне можем создать необходимую разность скоростей. Если для постороннего (внешнего) наблюдателя длительность соударения равна d? (или dt), то наблюдатель, находящийся на первом теле, зафиксирует по своим часам длительность d?1 , а находящийся на втором теле - длительность d?2 . Для определенности предположим, что

d?1 > d?2

Обратимся теперь к уравнению второго закона Ньютона (312), связывающему силу Рх с ходом реального времени d? на телах. Легко видеть, что сила Рх2 , действующая со стороны второго тела на первое, превышает силу Рх1 , действующую со стороны первого тела на второе, то есть

Рх2 > Рх1

ибо в первом случае знаменатель правой части формулы (312) меньше, чем во втором.

Следовательно, в процессе соударения двух тел с разным ходом времени на них образуется нескомпенсированная сила

Рхв = Рх2 - Рх1 ? 0 (330)

Условно будем называть эту силу, вызванную хрональными причинами, внутренней, ибо она возникает внутри полностью изолированной системы и действует на окружающую среду. Если ход, времени на телах одинаков, то сила Рхв = 0, то есть сила действия равна силе противодействия.

Мы пришли к совершенно замечательному результату: если на соударяющихся телах время течет с разной скоростью, то сила действия по абсолютной величине не равна силе противодействия. Таковы условия, необходимые и достаточные для нарушения третьего закона механики Ньютона. При этом сила всегда меньше со стороны того тела, на котором больше скорость хода реального времени, и наоборот. Таков теоретический прогноз ОТ. Он в равной мере касается микромира (элементарных частиц, атомов, молекул), макромира (привычных нам тел), мега- и более грубых миров (планет, звезд, галактик и т.д.). Следует также добавить, что гравитационное взаимодействие планет, звезд и галактик тоже можно рассматривать как удар, только мягкий, причем на всех подобного рода телах ход реального времени, как правило, не одинаков со всеми вытекающими отсюда пикантными последствиями [ТРП, стр.413-416].

 2. Условия нарушения закона сохранения количества движения.

Несоблюдение в определенных условиях третьего закона Ньютона автоматически решает проблему нарушения закона сохранения количества (и момента количества) движения.

Действительно, из-за разного хода времени и нарушения третьего закона на тела действуют неодинаковые импульсы, причем

Рх2 d?2 > Рх1 d?1

Это объясняется тем, что в уравнение (312) сила входит в первой, степени, а ход времени - в квадрате. Поэтому ускоренный ход времени на первом теле не в состоянии скомпенсировать уменьшение первой силы. Например, если первый ход больше второго в 2 раза, то первая сила окажется меньше второй в 4 раза. В результате импульс первой силы будет в 2 раза меньше импульса второй.

Импульсы сил равны изменениям соответствующих количеств движения (см. формулу (315)), поэтому

d(m?)1 < d(m?)2

Это значит, что суммарное количество движения двух тел до взаимодействия (?m?)’ оказывается не равным суммарному количеству движения тех же тел после взаимодействия (?m?)”, причем

(?m?)’ > (?m?)” (331)

ибо первое тело теряет часть своего импульса в ходе взаимодействия.

Следовательно, при механических взаимодействиях тел с разным ходом времени нарушается не только третий закон Ньютона, но и закон сохранения количества движения (импульса) (см. уравнения (330) и (331)). Все сказанное относится также к закону сохранения момента количества движения и к упомянутому в параграфе 14 гл. XV закону сохранения количества вибродвижения. В результате взаимодействия возникает нескомпенсированная внутренняя сила Рхв , направленная в сторону тела с ускоренным ходом времени; это же тело обладает заниженным количеством движения; суммарное количество движения обоих тел после взаимодействия тоже уменьшается. На практике соответствующая ситуация возникает, например, при бета-распаде ядер, где замедленным ходом времени располагает быстро движущаяся бета-частица.

В приведенных рассуждениях величины d?1 , d?2 и dt характеризуют ход реального времени на первом и втором телах, а также ход эталонного времени; они могут быть равны длительности взаимодействия (удара) или быть пропорциональными этой длительности. В общем случае имеет место соотношение

d?1 ? d?2 ? dt (332)

Это неравенство определяет условия нарушения третьего закона Ньютона и закона сохранения количества движения. Возникающие нарушения тем значительнее, чем больше различаются между собой указанные величины.

Для нас привычными являются случаи, когда ход реального времени на взаимодействующих телах практически одинаков и его можно принять равным ходу эталонного времени. Это соответствует условию

d?1 ? d?2 ? dt (333)

при котором упомянутые законы практически сохраняют свою силу. Именно при подобных условиях выполняли свои опыты Рен, Мариотт, Ньютон и другие авторы.

Таковы выводы-прогнозы ОТ. Они в корне противоречат существующим представлениям и поэтому ставят вопрос жестко: быть или не быть ОТ. Для реализации в опыте этих выводов я рассмотрю несколько схем механических устройств, в которых возникает нескомпенсированная внутренняя сила и которые получили наименование безопорных движителей (БМ) [ТРП, стр.416-418].

  • Читать дальше
  • 1
  • ...
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: