Шрифт:
Здесь я не упомянул большую группу других явлений, таких, как химическое, фазовое, диффузионное, гидродинамическое и т.д. В термодинамике эти явления принято считать простыми, однако у них нет своих родных специфических веществ, следовательно, они суть не истинно, а условно простые (см. гл. XIV).
Общее число истинно простых разнородных форм явлений, существующих во Вселенной, нам не известно, и мы его никогда не сможем определить. Однако этот вопрос должен волновать скорее философа, чем инженера. По мере развития наших знаний это число может увеличиваться. Но сейчас для нас важно только то, что количество истинно простых явлений и определяющих их экстенсоров превышает единицу. Подробные сведения обо всех перечисленных истинно простых явлениях приводятся ниже, в частности в гл. XV.
Чтобы конкретизировать дальнейшие рассуждения и сделать их более наглядными, я воспользуюсь, например, такими хорошо известными в термодинамике простыми явлениями, как кинетическое, механическое и электрическое. Экстенсоры для них также хорошо известны: это масса m, объем V и электрический заряд ?. Далее будет показано, что кинетическое и механическое явления суть частные случаи метрического, то есть фактически они не истинно, а условно простые, однако сейчас это не существенно.
В термодинамике величины, подобные массе, объему, электрическому заряду и т.д., именуются факторами экстенсивности, или обобщенными зарядами, или координатами состояния. Латинское extensivus - расширяющий, удлиняющий, в противоположность интенсивному, означает не качественное, а лишь количественное увеличение, расширение, распространение. В работах [20, с.235; 21, с.296] для факторов экстенсивности принято сокращенное название «экстенсор». Следуя этим работам, слово «экстенсор» можно использовать при конструировании наименований для различных частных явлений. При этом новые названия получаются путем прибавления к наименованию явления окончания «ор», например кинетиор, механиор, электриор и т.д. В настоящей монографии такой способ конструирования новых производных терминов благодаря его простоте и наглядности принят в качестве основного.
В дальнейшем мы не раз будем пользоваться аналогичной эстафетой передачи различных величин, буквенных обозначений, размерностей, терминов, понятий, законов и даже целых теорий в ОТ из других известных дисциплин, когда это не входит в противоречие с принятой нами новой парадигмой. ОТ строится не на голом месте. Поэтому если какая-либо найденная новая величина окажется уже знакомой, мы не будем пренебрегать знанием тех ее свойств, которые могут потребоваться для наших рассуждений. Ведь нужные нам свойства любого конкретного понятия всегда могут быть установлены путем его соответствующего теоретического и экспериментального изучения. Поэтому такое заимствование нисколько не нарушает целостности и стройности логических рассуждений, но значительно ускоряет продвижение вперед.
Еще одно замечание. Экстенсор представляет собой меру, и только меру, количества вещества некоторого явления. Следовательно, смешивать эти два понятия - количество вещества и его меру - ни в коем случае нельзя. Однако иногда не делают различия между мерой и тем, что стоит за этой мерой. Например, когда говорят о переносе массы, то это звучит как перенос меры, что лишено смысла. Кстати, о массе. Масса есть мера количества одной из частных форм простого вещества. Поэтому отождествлять массу с материей (веществом) в целом невозможно. Столь же недопустимо отнимать у массы право служить мерой количества вещества (материи) применительно к простому кинетическому (метрическому) явлению.
Условимся простые экстенсоры обозначать буквой Е. Тогда полный экстенсор ансамбля простых явлений определится суммой
N1 = (27)
где число веществ ансамбля равно l. Каждый экстенсор Ek , включает в себя большое множество порций веществ данного сорта (по типу уравнения (25)), причем в общем случае отдельные кванты данного вещества могут различаться между собой [ТРП, стр.78-81].
3. Взаимодействия универсальное и специфические.
Следующей важнейшей характеристикой, входящей в основное уравнение ОТ (14), служит мера количества поведения N4 , которую необходимо найти применительно к явлению (26). Поскольку в данном случае речь идет об ансамбле простых явлений, постольку с целью решения поставленной задачи нам придется обратить внимание на механизм образования такого ансамбля. Очевидно, что в основе этого механизма должно лежать какое-то специфическое поведение вещества, обусловленное процессом взаимодействия между отдельными его квантами. Взаимодействие, в свою очередь, предполагает стремление различных разрозненных квантов друг к другу и их сближение посредством перемещения. В результате образуется ансамбль в виде соответствующей грозди квантов - порций веществ.
Здесь мы опять обратимся к методу эстафеты и вспомним то, что уже было известно ранее о взаимодействии. Взаимодействие - это довольно сложное понятие даже для второй, весьма простой ступени эволюции. Поэтому целесообразно взглянуть на него в историческом плане, отметив отдельные этапы становления этого понятия в целом и его конкретных элементов.
Уже в седой древности человек сталкивался со всевозможными взаимодействиями объектов природы. Пытаясь осмыслить механизм наблюдаемых взаимодействий, он постепенно пришел к пониманию силы, которая, как мы убедимся, обусловливает появление взаимодействий самого простого вида. Именно этот наипростейший вид взаимодействий был изучен с количественной стороны прежде других.
Количественно сила была определена значительно раньше, чем материя и движение, вещество и его поведение. Первоначально это было сделано в механике с позиций статики. Например, уже в трудах гениального Аристотеля (384-322 гг. до н.э.) содержатся намеки на условия равновесия рычага. Очень четко законы рычага были сформулированы Архимедом (287-212 гг. до н.э.) в виде золотого правила механики, согласно которому сила обратно пропорциональна длине рычага.
Что касается качественного, структурного, физического содержания понятия силы, то это вопрос более трудный. Например, Леонардо да Винчи (1452-1519) так сформулировал суть силы: «Силой я называю духовную способность, невидимую потенцию, которая через случайное внешнее насилие вызывается движением, помещается и вливается в тела, извлекаемые и отклоняемые от своего естественного бытия, причем она дает им активную жизнь удивительной мощности; она принуждает все созданные вещи к изменению формы и положения, стремится с яростью к желанной ей смерти и распространяется с помощью причин... Будучи принужденной, всякая вещь принуждает. Ни одна вещь не движется без нее» [53, с.51].
Впоследствии в механике было дано новое количественное определение силы, основанное на принципах динамики. Например, понятие силы как причины движения ввел Кеплер (1571-1630), но силу он измерял через скорость. Галилей (1564-1642) силу считал эквивалентной весу и измерял ее вызванным ускорением. Ньютон (1642-1727) писал:
«Приложенная сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения... Сила проявляется единственно только в действии и по прекращении действия в теле не остается... Происхождение приложенной силы может быть различное: от удара, от давления, от центростремительной силы» [53, с.131]. Ньютон лучше других понимал разницу между количественным и качественным определениями силы. Он разъяснял, что рассматривает «эти силы не физически, а математически» [53, с.131]. Физических определений он избегал: «Причину этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю» [53, с.129].