Шрифт:
Во всех уравнениях переноса - обобщенных и частных - основные проводимости, или основные коэффициенты переноса, отражают влияние данной силы на сопряженный с нею поток, а перекрестные проводимости, или перекрестные коэффициенты переноса, - на несопряженные с нею потоки. Основные проводимости имеют индексы, составленные из одинаковых цифр, перекрестные - из разных. Перекрестные проводимости именуются также коэффициентами увлечения [20, 21]. Коэффициенты увлечения определяют количественную сторону взаимного увлечения различных потоков [ТРП, стр.145-147].
6. Проводимость и сопротивление.
Дополнительные интересные сведения о пятом начале ОТ можно получить, если углубиться в анализ физического смысла коэффициентов переноса КР , ? , ? , L и М . При этом вполне достаточно ограничиться рассмотрением только одной величины КР , ибо через нее выражаются все остальные.
Уже отмечалось, что в уравнениях переноса характеристика КР играет роль обобщенной проводимости. Очевидно, что по своей физической сути проводимость, грубо говоря, должна определять некие пустотные, полостные свойства системы, ее способность пропускать сквозь себя постороннее вещество. Это значит, что проводимость сродни емкости, именно поэтому в уравнениях переноса роль проводимости играет емкость.
Однако должно быть совершенно ясно, что способность пропускать вещество, определяемая емкостью КР , не тождественна способности заполняться веществом, определяемой емкостью К (см. параграф 3 гл. IX). Имеющуюся разницу легко себе представить на условном примере двух капиллярно-пористых тел, обладающих одинаковыми суммарными объемами пор, но различными по размерам и конфигурации капиллярами. У этих тел способности заполняться влагой окажутся одинаковыми, но пропускательные способности будут между собой не равны из-за неодинаковых гидродинамических сопротивлений капилляров. Несходство этих двух способностей находит свое отражение в разнице между емкостями при постоянных интенсиалах и постоянных экстенсорах.
Следовательно, коэффициент АР , обратный обобщенной проводимости КР (см. формулу (106)), должен характеризовать свойство системы сопротивляться прохождению сквозь нее вещества. Иными словами, характеристика АР представляет собой коэффициент обобщенного сопротивления системы, или просто обобщенное сопротивление системы. Чем большей проводимостью обладает система, тем меньше ее сопротивление и наоборот. Отдельные частные виды сопротивлений обозначим через А? , А? , AL и АМ , они обратны соответственно проводимостям ? , ? , L и М.
На практике находит применение следующая частная форма полного сопротивления проводника длиной ?х и сечением F :
R = AM?х = ?х/M = AL(?х/F) = ?х/(FL) (131)
Через полное сопротивление R потоки J и I выражаются так:
J = ?P/(RF) (132)
I = FJ = ?P/R (133)
E = JFt = It = ?Pt/R (134)
где ??
– разность интенсиалов на концах проводника; ?
– количество перенесенного вещества; t - длительность процесса. В форме (133) обычно записывается закон электропроводности Ома.
Все сказанное позволяет хорошо уяснить смысл величин, входящих в равенство (106) [ТРП, стр.147-149].
7. Вторая специфическая мера качества, или структуры, вещества.
Очевидно, что величина АР , тождественная сопротивлению и обратная емкости, по сути дела должна характеризовать заполненность системы собственным веществом, полноту структуры этого вещества, причем эта полнота рассматривается под углом зрения способности системы пропускать переносимое вещество. Следовательно, величина АР тоже представляет собой некую меру качества, структуры вещества, или просто структуру вещества.
Одна структура нам уже известна - эта величина А , она определяется формулой (60). Очевидно, что структуры А и АР не тождественны: первая подчеркивает заполненность системы собственным веществом, оставляя открытым вопрос о возможности проникновения постороннего вещества в систему, вторая, наоборот, делает упор на проницаемость системы для постороннего вещества, не подчеркивая роли заполненности. В совокупности обе величины хорошо определяют главные свойства структуры системы, дополняя друг друга.
В силу сказанного величину АР в отличие от А целесообразно именовать второй мерой качества вещества, или второй структурой. При этом вторая мера качества АР , как и первая А , является мерой специфической, сопряженной с каждым отдельным специфическим веществом системы.
Таким образом, коэффициент АР играет роль второй характеристики, входящей в состав меры ?2 уравнения (15) применительно к ансамблю простых явлений (26). Теперь вместо выражения (70) мы должны записать
N2 = f(А ; АР) (135)