Шрифт:
С другой стороны, имеющиеся своеобразие и неповторимость экстенсора могут крайне затруднить его выбор, если мы предварительно не располагаем соответствующими понятиями и терминами, отражающими это своеобразие с качественной и количественной стороны. Например, для открытия перемещательного явления надо было иметь понятия перемещения и силы, вращательного явления - угла поворота и момента силы, кинетического - массы и скорости, электрического - электрических заряда и потенциала, термического - энтропии и абсолютной температуры и т.д. Иными словами, выбор экстенсора для нового явления всегда требует выработки соответствующих новых понятий, терминов, размерностей и т. д., а это представляет собой нелегкую задачу. Именно поэтому правильный выбор экстенсора равносилен открытию нового явления [ТРП, стр.217].
3. Применения начал.
От специфики перейдем к обсуждению общих свойств, которых у простых явлений великое множество. Главными из них надо считать те свойства, которые вытекают из начал ОТ. Следовательно, в качестве основных правил, облегчающих выбор или открытие нового экстенсора, по необходимости должны служить уравнения семи начал ОТ.
Если «кандидат» в экстенсоры уже намечен, то, согласно первому началу, переход вещества через контрольную поверхность должен сопровождаться совершением работы, определяемой формулой (34), при этом скорость изменения энергии с экстенсором должна быть равна сопряженному с ним интенсиалу (см. уравнение (33)), а произведение экстенсора на интенсиал должно иметь размерность энергии.
Согласно второму началу ОТ, экстенсор должен удовлетворять принципу сохранения. Связь между экстенсором и интенсиалом определяется уравнением (54) или (58) третьего начала. Влияние выбранного экстенсора на другие подчиняется закону симметрии (четвертое начало, уравнение (85)). Вещество, определяемое экстенсором, должно обладать способностью распространяться под действием сопряженного с ним интенсиала (пятое начало, уравнение (114) или (124)), а также увлекать за собой другие вещества ансамбля по закону симметрии (шестое начало, уравнение (173)). При подводе и отводе этого вещества система должна изменять сопряженный с ним интенсиал, а распространение вещества под действием разности значений этого интенсиала должно сопровождаться выделением или поглощением экранированного термического вещества (седьмое начало, уравнение (225)) [ТРП, стр.218].
4. Правило аддитивности.
В сомнительных случаях, чтобы быстро отличить экстенсор от интенсиала - такая необходимость иногда возникает, - можно воспользоваться так называемым правилом аддитивности: при мысленном дроблении системы ее вещество, а следовательно, и экстенсор также должны дробиться. Например, свойством аддитивности обладают объем, масса, электрический заряд, мера количества термического вещества и т.д.
В противоположность экстенсору интенсиал не обладает свойством аддитивности, то есть при мысленном дроблении системы он не дробится вместе с нею, а сохраняет одно и то же значение у всех частей раздробленной системы. Это относится, например, к давлению, скорости, электрическому потенциалу, температуре и т.п. [ТРП, стр.218].
5. Применение характерных свойств нано-, микро- и макромиров.
Наконец, при выборе экстенсора для проверки правильности этого выбора большую помощь может оказать знание определенных весьма характерных общих свойств простого вещества на различных количественных уровнях мироздания. Каждое простое вещество обязано присутствовать на всех уровнях и проявлять все необходимые общие свойства. Если этого не наблюдается, то соответствующее явление не может быть истинно простым. Здесь мы ограничимся только тремя количественными уровнями: нано-, микро, и макромирами, а также обратим внимание лишь на некоторые наиболее характерные общие свойства простого явления.
Главная особенность нановещества (нанополя) заключается в том, что оно обладает ярко выраженными силовыми свойствами, то есть представляет собой вещество взаимодействия. Примерами нанополей могут служить гравитационное и электрическое (электростатическое).
Наиболее характерная особенность микровещества состоит в его дискретности: на уровне микромира вещество имеет дискретную, зернистую, квантовую структуру (вспомним такие микроансамбли, как электрон, позитрон, протон, нейтрон и т.д., состоящие из определенного набора порций различных простых веществ). Дискретность вещества является причиной дискретности и его количественной меры - экстенсора: для каждого простого вещества всегда можно найти некую минимальную меру е, на которую скачкообразно изменяется экстенсор микроансамбля.
Однако дискретность вещества вовсе не означает, что дискретными должны быть и сопряженные с ним интенсиалы. Благодаря дискретности экстенсоров и всеобщей связи явлений, определяемой третьим началом ОТ, при подводе порции любого данного вещества все интенсиалы микроансамбля одновременно претерпевают скачкообразные изменения, но величины этих скачков зависят от размеров, а следовательно, и емкости микроансамбля. У малого микроансамбля скачки интенсиалов могут быть значительными. С увеличением числа квантов микроансамбля каждый последующий квант приводит к уменьшению скачков и в пределе они обращаются в нуль - вещество приобретает свойство непрерывности. Как видим, описанное свойство интенсиалов микроансамблей скачкообразно изменяться от порций вещества имеет совсем другую природу, чем дискретность экстенсоров. Поэтому ни о какой дискретности интенсиалов говорить нельзя, в частности, это касается и времени, которое является характеристикой, принадлежащей интенсиалу (см. параграф 1 гл. XV).
В макромире вещество может рассматриваться как непрерывная среда, или континуум (таким свойством обладает любая достаточно большая совокупность микрочастиц или достаточно большой микроансамбль). Даже песчинки в большом количестве обладают определенными свойствами континуума: способны течь, передавать давление во все стороны и т.д.
При проверке экстенсора иногда могут помочь правила проницаемости и отторжения (см. параграф 2 гл. III), согласно которым микромир в той или иной степени прозрачен для нанополей и способен их излучать и поглощать; макромир в определенной мере проницаем для нанополей и микрообъектов и тоже в состоянии их излучать и поглощать; вещество каждого данного истинно простого явления должно также обладать способностью участвовать в специфическом и универсальном взаимодействиях и т.д.