Вход/Регистрация
Астрономы наблюдают
вернуться

Зигель Феликс Юрьевич

Шрифт:

Камера-обскура создает изображение Солнца с большими подробностями — на снимке можно различить детали, угловые размеры которых близки к минуте дуги. А это уже такая же зоркость, как и у человеческого глаза — для начала совсем неплохо.

Теперь посмотрите, как выглядит гамма-телескоп (рис. 43). Пришедшие из космоса жесткие гамма-кванты поступают сначала в особый радиатор А, внешне несколько напоминающий слоеный пирог (кстати, его называют иногда кристаллом-сандвичем).

Рис. 43. Схема гамма-телескопа.

Взаимодействуя с веществом этого «сандвича», гамма-кванты порождают электроны и позитроны. Эти частицы поступают в свою очередь в особый, так называемый черепковский счетчик.

В отличие от гейгеровского счетчика, где появление частицы или жесткого кванта вызывает электрический разряд, в черенковском счетчике быстро движущиеся частицы порождают особое свечение вещества. Явление это впервые было открыто советским физиком П. А. Черенковым — отсюда и наименование счетчика.

Конечно, свечение это очень слабое, и его приходится усиливать с помощью так называемых фотоумножителей. Но так или иначе, гамма-телескоп регистрирует приходящие гамма-кванты, и можно даже с помощью дополнительных устройств рассортировать их на более жесткие и менее жесткие.

«Близорукость» гамма-телескопа очень велика.

Угол зрения, или конус видимости, определяется, очевидно, размерами радиатора и счетчика. В современных гамма-телескопах регистрируется поступление гамма-квантов с участка неба поперечником 30–35°. Из всех существующих телескопов гамма-телескопы в этом отношении самые несовершенные, самые «близорукие».

И все-таки, как и рентгеновские телескопы, их выносят на границу атмосферы и за ее пределы. И они уже сегодня доставили нам множество интереснейших сведений о невидимом коротковолновом излучении небесных тел. Не исключено, что некоторые волнующие нас загадки (скажем, природа сверхплотных и очень маленьких по размеру нейтронных звезд) будут решены именно этими средствами.

Что касается приемников ультрафиолетового излучения, близкого к видимой части спектра, то ими могут быть, например, фотопластинки, эмульсия которых чувствительна к ультрафиолетовым лучам. Приведем теперь несколько примеров из области «астрономии высоких энергий».

Когда в рентгеновском кабинете нас подвергают просвечиванию, источник рентгеновских лучей находится, естественно, вне нашего тела. Создаваемый им поток жесткого коротковолнового излучения пронизывает нас, а затем попадает на особый люминесцирующий экран, и получается видимое глазом изображение. Если экран заменить фотопленкой, получится рентгенограмма, в сущности, демонстрирующая нашу прозрачность в рентгеновских лучах. Ткани лучше пропускают рентгеновские лучи, чем кости. Поэтому на медицинских рентгенограммах легко различимы детали скелета.

При получении рентгенограммы Солнца ни о каком «просвечивании» не может быть и речи. Само Солнце, в отличие от человеческого тела, служит источником рентгеновских лучей. Типичная рентгенограмма Солнца сильно отличается от снимков Солнца в видимых лучах спектра.

Во время полных солнечных затмений удалось выяснить, какие части Солнца преимущественно испускают рентгеновские лучи. Помогла Луна, которая, как исполинская заслонка, загораживала разные части солнечного диска, а в момент полной фазы оставила незакрытой лишь солнечную атмосферу (точнее, хромосферу) и корону. Если бы в этот момент рентгеновское излучение Солнца упало до нуля, это значило бы, что рентгеновские лучи зарождаются на солнечной поверхности — ведь огромный лунный шар для них непрозрачен. Наоборот, если бы в момент полной фазы рентгеновское излучение не исчезало совсем, а только слабело, то отсюда следовало бы, что источники этих лучей находятся над солнечной поверхностью.

Как раз этот случай и наблюдается в действительности. Тем самым было доказано, что рентгеновское излучение возникает в солнечной атмосфере и короне.

В отличие от солнечной поверхности, солнечная корона имеет температуру миллион градусов! Заметим, что эта величина характеризует очень высокую подвижность частиц, слагающих корону, — протонов, альфа-частиц, электронов. Расчеты показывают, что солнечная корона за счет очень высокой температуры порождает рентгеновское излучение и излучение это достаточно велико.

Когда на Солнце возникает хромосферная (или солнечная, как ее иначе называют) вспышка, рентгеновское излучение Солнца увеличивается иногда в сотни раз. Еще бы, ведь температура вспышек достигает сотен миллионов градусов! Предстоит выяснить закономерности в образовании этих взрывов на Солнце.

Еще в 1963 году приборы американской ракеты «Аэроби» зафиксировали на звездном небе два мощных источника рентгеновского излучения. Один из них находился в созвездии Тельца и, по-видимому, связан со знаменитой Крабовидной туманностью (рис. 44), другой — в созвездии Скорпиона. Выходит, что на небе, если бы наши глаза воспринимали рентгеновские лучи, мы увидели бы три Солнца — одно «настоящее», обычное, и два других, менее ярких, в созвездиях Тельца и Скорпиона.

  • Читать дальше
  • 1
  • ...
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: