Шрифт:
Рис. 13.1.Конические сечения – это три фундаментальные кривые, которые получаются при пересечении конуса плоскостью (или фактически двух конусов, прикрепленных друг к другу острыми концами). Эти три кривые: парабола, эллипс (в частном случае – окружность) и гипербола
Рис. 13.2.В то время как правильный икосаэдр состоит из двадцати треугольных граней, показанный на рисунке усеченный икосаэдр состоит из двадцати шестиугольных и двенадцати пятиугольных граней, причем никакие два пятиугольника не имеют общей стороны. В отличие от правильных икосаэдров, которые относятся к Платоновым телам, усеченные икосаэдры относятся к архимедовым телам, названным в честь греческого математика, исследовавшего эти фигуры более двух тысяч лет назад. Эта форма напоминает футбольный мяч и один из вариантов так называемых фуллеренов – молекулярной структурированной формы углерода, состоящей из шестидесяти атомов, открытой в 1985 году химиками Гарольдом Крото и Ричардом Смэлли. Термин фуллеренявляется сокращением от бакминстерфуллерена, класса молекул, названного в честь архитектора Ричарда Бакминстера Фуллера, изобретателя геодезического купола похожей формы
По утверждению математика Майкла Атья, струнным теоретикам должно быть приятно, «что то, с чем они “играют”, если даже это невозможно измерить экспериментально, может оказаться очень богатой… математической структурой, которая не только согласуется с теорией, но фактически открывает новые двери, дает новые результаты и т. д…. Очевидно, они кое в чем разбираются. Остается выяснить, является ли это “кое-что” тем, что Бог создал для Вселенной. Но если Бог создал это не для Вселенной, то, вероятно, для чего-то еще».[256]
Я не знаю, чем является это «кое-что», но оно поражает меня слишком сильно, чтобы быть ничем. Но Атья, по его словам, также осознает риск быть убаюканным элегантностью, базирующейся на зыбкой почве. «Красота может быть скользкой вещью», – предупреждает Джим Холт, скептически относящийся к теории струн и публикующий свои статьи в «New Yorker».[257] Или, как выразился Атья: «подчинение физики математике таит в себе опасность, поскольку может завести нас в область измышлений, воплощающих математическое совершенство, но слишком далеких от физической реальности или даже не имеющих с ней ничего общего».[258]
Безусловно, слепое следование математической красоте способно ввести нас в заблуждение, и даже если красота указывает нам верное направление, то одна лишь красота никогда не сможет привести нас к цели. В конце концов, красота должна быть подкреплена чем-то еще – чем-то более существенным, в противном случае наши теории никогда не выйдут за пределы уровня убедительных спекуляций, независимо от степени их обоснованности и правдоподобия.
«Красота не может гарантировать истины, – утверждал физик Роберт Миллс, соавтор теории Янга-Миллса. – У нас нет никаких логических оснований утверждать, что истина должна быть прекрасной, но наш опыт постоянно подсказывает, что следует ожидать красоту в самой сути вещей и использовать это ожидание в качестве руководства в поисках более глубокого теоретического понимания фундаментальных структур природы». И наоборот, добавляет Миллс, «если предложенная теория неэлегантна, мы считаем ее сомнительной».[259]
Итак, где же заканчивается математика и начинается теория струн? Физик из Корнеллского университета Генри Тай считает, что «теория струн слишком красива, богата, креативна и утонченна, чтобы ее не использовала природа. Это было бы слишком расточительно»[260]. Только этого недостаточно, чтобы сделать теорию струн верной, а такие критические трактовки, как «The Trouble with Physics»и «Not Even Wrong»,сеют сомнения в общественном сознании в тот момент, когда сама эта теория находится в некотором упадке. Даже такой энтузиаст, как Брайан Грин, автор книги «The Elegant Universe»(«Элегантная Вселенная»), признает, что физическая теория не может быть оценена только на основании элегантности: «Вы судите о ней на основании того, может ли она делать предсказания, которые будут подтверждены экспериментом».[261]
Во время написания этой книги я имел возможность обсуждать ее содержание со многими людьми, имеющими образование в соответствующей области, которым, по моему мнению, было бы интересно читать о подобного рода вещах. Когда они слышали, что книга связана с математическими основами теории струн, то часто их реакция была примерно следующей: «Подождите минуту. Разве с теорией струн что-нибудь не так?» Их вопросы предполагали, что написание книги о математических основах теории струн – это примерно то же, что книга о фантастических инженерных разработках, которые легли в основу строительства «Титаника». Мой коллега-математик, которому, вероятно, виднее, даже публично заявил, что поскольку «суд присяжных по теории струн еще не состоялся», нечего судить о математической базе, связанной с теорией струн.
Такое заявление подразумевает фундаментальное заблуждение о природе математики и ее отношении к эмпирическим наукам. В то время как окончательным доказательством в физике считается эксперимент, в математике это не так. Можно иметь миллиард частных свидетельств о том, что что-то является верным, но миллиард первое опрокинет все здание. До тех пор пока что-то полностью не доказано при помощи чистой логики, оно остается гипотезой.
В физике и других эмпирических науках истинность любого утверждения всегда является предметом ревизии. Теория тяготения Ньютона продержалась более двух столетий, но из-за присущих ей ограничений в конце концов была заменена теорией Эйнштейна, имеющей собственные ограничения, которые когда-нибудь приведут к замене ее теорией квантовой гравитации, например теорией струн. В то же время математика, на которой базируется ньютоновская механика, является на сто процентов верной и никогда не изменится.
Чтобы сформулировать теорию гравитации, Ньютону пришлось попутно изобрести математический анализ. Когда теория гравитации Ньютона оказалась бессильной объяснить новые эксперименты из-за присущих ей ограничений и была разработана общая теория относительности, мы не отказались от математического анализа. Мы держимся за математику, которая является не пустым звуком, но жизненной необходимостью, понимая, что ньютоновская механика представляет собой удивительно хороший инструмент для большинства ситуаций, хотя ее и нельзя применять в предельных случаях.