Вход/Регистрация
Теория струн и скрытые измерения Вселенной
вернуться

Надис Стив

Шрифт:

Рис. 10.3.Энергия пустого пространства, также называемая энергией вакуума, может принимать огромное число возможных значений, которые представляют стабильные или полустабильные решения уравнений теории струн. Понятие ландшафта теории струн было придумано, в частности, для того, чтобы наглядно показать, что теория имеет много возможных решений, соответствующих многим вакуумным состояниям, или ложным вакуумом, – каждое из которых может представлять другую вселенную. Стабильное состояние ложного вакуума на этом рисунке представлено впадинами, или долинами, куда могут попасть и остаться там шары, которые скатываются вниз с горы в разных направлениях. Высота этих впадин соответствует энергии вакуума, принятой для каждого участка ландшафта. Некоторые теории предполагают, что может быть порядка 10 500решений, каждое из которых соответствует своему многообразию Калаби-Яу и, следовательно, своей геометрии для компактных измерений. Пространства Калаби-Яу являются неотъемлемой частью этой картины, так как, по мнению ученых, суммарная вакуумная энергия поддерживает шесть дополнительных измерений теории струн, свернутых в таких пространствах, не позволяя им расширяться до бесконечности (изображения пространства Калаби-Яу любезно предоставлены Эндрю Дж. Хансоном (Andrew J. Hanson), Университет Индианы)

Физик Дэвид Гросс сравнил антропные аргументы такого рода с тараканами, которых необходимо уничтожать. «Если вас одолели тараканы, вы не можете избавиться от них», – пожаловался он на космологической конференции.[188]

Стэнфордский физик Бартон Рихтер говорит, что энтузиасты ландшафта, такие как его стэнфордский коллега Леонард Зюскинд «отказались от этой идеи. Для них путешествие, которое завело физиков так далеко, подошло к концу, – пишет Рихтер в New York Times. – Поскольку они верят в эту идею, я не могу понять, почему они не возьмутся еще за что-нибудь, например за макраме».[189]

«Нам не удается избавиться от множества решений теории струн, – замечает Зюскинд, – поэтому нравится вам это или нет, ландшафт остается». Поскольку это так, то лучше с ним заключить мир и проверить, есть ли что-нибудь полезное, что можно из него извлечь. «Дорога физики усеяна трупами упрямых стариков, которые не знали, когда пора сдаваться», – пишет он в своей книге «Космический ландшафт» (The Cosmic Landscape), осознавая, что он также может быть «упертым стариком, сражающимся до конца».[190]

Справедливости ради следует сказать, что споры возникали постоянно. Я никогда не принимал участия в дискуссии, от которой, вероятно, получил бы удовольствие будучи математиком. Мне не приходится давать материал, который угрожает подорвать сообщество физиков. Вместо этого я имею возможность сидеть в стороне и задавать обычные вопросы типа: как математика может пролить свет на эту ситуацию?

Некоторые физики вначале надеялись на то, что только одно многообразие Калаби-Яу может характеризовать скрытые измерения теории струн, но скоро стало понятно, что существует большое число таких многообразий, каждое из которых имеет свою уникальную топологию. В рамках каждого топологического класса существует непрерывное, бесконечно большое семейство многообразий Калаби-Яу. Это положение, вероятно, легче всего проиллюстрировать с помощью торов. Тор представляет собой топологический эквивалент прямоугольника. Если скатать прямоугольный лист в цилиндр и соединить концы, то получится тор. Прямоугольник определяется высотой и шириной, которые могут принимать бесконечное число возможных значений. Все эти прямоугольники и соответствующие им торы являются топологически эквивалентными.

Они представляют собой часть одного и того же семейства, но их может быть бесконечное множество. То же справедливо для многообразий Калаби-Яу. Мы можем взять многообразие, модифицировать его «высоту», «ширину» и другие параметры и получить бесконечное семейство многообразий одного и того же топологического типа. Таким образом, KKLT и связанная с ним концепция ландшафта не меняет эту ситуацию. В лучшем случае, наложение ограничений из физики, то есть обязательное квантование потоков, привело к очень большому, но конечному, а не бесконечному, числу многообразий Калаби-Яу. Я полагаю, что это уже можно считать прогрессом.

Рис. 10.4.Две стороны, представляющие спор о ландшафте: а– физик Дэвид Гросс из Санта-Барбары и б– физик Леонард Зюскинд из Стэнфорда (фото Зюскинда предоставила Анна Воррен (Anne Warren))

Лично я далек от мысли, что существует одно «данное богом» многообразие Калаби-Яу или только несколько. Я всегда допускал, что все гораздо сложнее. В конце концов, еще никто не говорил, что достичь дна Вселенной и наметить ее внутреннюю геометрию легко.

Итак, что мы можем сделать с идеей ландшафта, которая так тревожит некоторых ученых? Я полагаю, что можно просто проигнорировать ее, так как ничего нельзя установить и доказать. Одни физики считают концепцию полезной, в то время как другие не видят в ней никакой пользы. Поскольку само понятие ландшафта теории струн возникло из рассмотрения бесчисленного количества состояний, многие из которых, если не все, связаны с многообразиями Калаби-Яу, то если мы вообще придаем какое-то значение этой идее с ландшафтом, нам необходимо лучше разобраться в многообразиях Калаби-Яу.

Я сознаю, что мое заявление звучит несколько наивно. Существует множество возможных решений для теории струн и множество возможных геометрий, исходя из которых можно компактифицировать дополнительные измерения, и многообразия Калаби-Яу представляют только верхушку айсберга. Я хорошо понимаю ситуацию и даже работаю над некоторыми из этих новых областей физики. Тем не менее большей части успехов, достигнутых в теории струн, и большей части гипотез мы обязаны использованием многообразий Калаби-Яу как модели. Кроме того, часть альтернативных геометрий, которые сейчас исследуются, такие как не-кэлеровы многообразия, получают путем деформирования или искривления многообразий Калаби-Яу. Не существует прямого и быстрого пути к не-кэлеровым геометриям, поэтому мы должны разобраться в многообразиях Калаби-Яу прежде, чем приступить к изучению таких вещей, как не-кэлеровы многообразия. Это обычная стратегия для всех областей исследования: вы ставите базовый лагерь, который служит знакомой точкой отправления, а затем отправляетесь в неизвестное.

  • Читать дальше
  • 1
  • ...
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: