Шрифт:
Разброс оценок различных ученых на пять порядков указывает на значительную их субъективность. Однако все они сходятся, безусловно, в одном — род человеческий далеко не одинок в нашей звездной системе, а тем более во вселенной. Из полученных оценок следуют еще два важных вывода.
Во-первых, вероятность существования разумной жизни на ближайших к нам звездах (в радиусе порядка 10 световых лет) невелика ввиду малого числа звезд в этом объеме. Вместе с тем это отнюдь не исключает возможность такого события.
Во-вторых, с увеличением радиуса поиска до сотен и тысяч световых лет число звезд резко возрастает и шансы на успех существенно повышаются.
Как же производить этот поиск? Какие есть пути установления контакта с ближайшими очагами разума?
Имеются три принципиальные возможности:
прямой контакт,
роботконтакт,
радиоконтакт.
Контакт с помощью световых пучков, назовем его лазерконтактом, отнесен к третьей группе. Сопоставление радиоконтакта и лазерконтакта будет дано в четвертой главе.
Сравним кратко эти три дороги, на которые рано или поздно выйдет человек.
Раскроем первый попавшийся под руку фантастический роман на космическую тему. С очень большой вероятностью мы встретим там такую сцену.
Молодой землянин с умным мужественным лицом, украшенным часто бородкой (может, мода на бородатых юнцов отсюда и пошла?), помахав с борта космического корабля невесте и прочим жителям планеты, стремительно стартует.
Он летит к обитателям далекой звезды для установления прямого контакта. Все предельно просто: «Прилетел, увидел, установил». Однако на пути осуществления этой мечты встают гигантские баррикады различных «но».
Первая из них — невообразимо большие расстояния. Пытаться их победить можно, располагая звездолетом со скоростью, близкой к скорости света.
Попробуем полететь к ближайшей звезде — альфе Центавра на самом быстроходном корабле, уже созданном человеком. Это корабли типа «Союз» и «Аполлон», развивающие вторую космическую скорость, равную приблизительно 11 километрам в секунду. Свет преодолевает расстояние Земля — альфа Центавра за 4,3 года. Отношение скоростей С/V покажет приблизительно, во сколько раз время полета нашего корабля будет больше, чем светового луча. Получаем время полета… боюсь испугать читателя… более 100 тысяч лет!
Вот к какому «но» привела наша попытка слетать к ближайшей звезде-соседке.
Нельзя ли существенно форсировать скорость наших ракет? Скорость корабля тем выше, чем больше скорость газов, выбрасываемых из сопла двигателя. Современные ракетные двигатели создают тягу за счет сгорания химического топлива. Расчеты показывают, что предельные скорости истечения газов здесь достаточно малы. Используя их, можно обеспечить полеты только в пределах солнечной системы. Выход за ее пределы требует новых двигателей.
В этом состоит очередное «но».
Достижение скорости, близкой к световой, требует создания реактивной тяги с потоком частиц, движущихся также со скоростью, соизмеримой со световой.
Идея такого двигателя уже обошла страницы многих журналов: это фотонный двигатель. На корабле создается установка, излучающая мощный поток световых частиц — фотонов. Под действием реактивной силы корабль получает стремительное движение в обратную сторону. Дьявольски просто! Но нужен бортовой источник электромагнитного излучения неслыханной мощности. Принципиально он может базироваться на использовании ядерных реакций, аннигиляции вещества и др. Но это огромная, пока не решенная проблема.
Кроме того, при достижении высоких скоростей коварную роль начинает играть так называемое число Циолковского. Это отношение начальной массы корабля (на старте) к конечной (на финише). Чем ближе скорость корабля к скорости света, тем больше должно быть это число.
Пусть корабль со скоростью V, близкой к С, летит по замкнутому маршруту Земля — туманность Андромеды — Земля. Если стартовая масса корабля, скажем, 6 миллионов тонн, то на финише он должен иметь массу лишь в 1 грамм!
Фантастичность таких чисел на современном уровне техники очевидна. Если лететь на фотонной ракете к ближайшей звезде — альфе Центавра и обратно, то здесь более обнадеживающая ситуация. Соотношение масс старта и финиша будет порядка сотен.
Далее, если заставить корабль набирать скорость очень быстро, то его земные пассажиры могут стать жертвой… собственного веса. Уже при ускорении в 20 м/сек2 (удвоенное земное ускорение) на бедного пассажира будет взвален рюкзак, приблизительно равный его весу. Заметно переступать эту черту при длительных полетах рискованно. Следовательно, набор скорости корабля и, конечно, ее сброс должны идти сравнительно медленно у любых кораблей, даже фотонных.