Шрифт:
Как мы видели, в зависимости от обстоятельств свет можно считать частицей или волной. В более общем смысле волна – это такое поле, что-то такое, что наблюдается везде во времени и пространстве. Если вы возьмете антенну и обойдете с ней весь дом, то везде засечете радиосигналы: где-то слабее, где-то сильнее. Это и есть электромагнитное поле. Фотон – это всего лишь кусочек электромагнитного поля, который летит через пространство со скоростью света. То же самое можно сказать обо всех фундаментальных силах. Существует сильное поле, слабое поле, гравитационное поле, и у каждого есть своя соответствующая частица.
Переносчики сильного ядерного взаимодействия называются глюонами. Глюоны, как и фотоны, лишены массы и двигаются со скоростью света, однако, в отличие от фотонов, подвержены тревожным состояниям, связанным с сепарацией. Фотон – носитель электромагнитной силы, но сам по себе он электрически нейтрален. То есть сам он и не чувствует электромагнитной силы.
Частицы, которые испытывают на себе сильное взаимодействие, обладают зарядом иного рода – «цветом». «Сильные» аналоги отрицательного и положительного зарядов в мире электромагнетизма – это красный, синий и зеленый заряды, которые определяют взаимодействия, возникающие между кварками в сильном поле. Если вы собрались бежать за цветными карандашами, чтобы рисовать сильные взаимодействия, повремените. Это просто очередные придурковатые жаргонные названия, которые физики придумали, чтобы сбить с толку непосвященных.
Однако между электромагнитным режимом и сильным режимом существует важное различие. Как и при электромагнетизме, «игроки» (кварки) обладают зарядом, однако, в отличие от электромагнетизма, мячик тоже заряжен. Глюоны не просто переносят сильное взаимодействие, они его чувствуют – что разительным образом отличает их от фотонов. Глюоны притягивают друг друга и запутываются в структуры, которые называются глюболами. Это значит, что глюоны не могут летать далеко и сразу попадаются в ловушку – это одна из главных причин, по которой сильное взаимодействие ограничено пределами ядра. Это вдвойне справедливо для кварков, которые дадут сто очков вперед отшельникам вроде Дж.-Д. Сэлинджера и Томаса Пинчона. Вне ядра они вообще не встречаются.
Наша теория гравитации, которая называется общей теорией относительности, вообще не требует частиц-переносчиков. Об общей теории относительности мы поговорим в главах 6 и 7, но тот факт, что гравитация, согласно теории относительности, настолько отличается от всего остального, – это тайна, разгадку которой мы, вероятно, узнаем, когда будет разработана «Теория Всего» (по крайней мере убедительная Теория Всего).
Если все силы «на самом деле» одинаковы, тогда у всех должна быть частица-переносчик, не так ли? Идея заключается в том, что гравитацию переносит частица под названием гравитон, но ее не просто еще не открыли – мы крайне далеки от технологической возможности провести эксперимент, чувствительности которого хватило бы для обнаружения этой частицы. Однако мы уже знаем, что если гравитоны существуют, то они, как и фотоны, должны быть лишены массы. Вот почему они способны передавать гравитационные сигналы на такие громадные расстояния.
Слабое взаимодействие отличается от других очень сильно и доказывает это, как только может. Самое интересное его отличие заключается в том, что слабое взаимодействие переносят три частицы-переносчика. В отличие от пижонских названий, которые получили другие частицы, эти называются просто – W– бозоны и Z– бозоны [71] . Почему же слабое взаимодействие настолько слабо, почему для того, чтобы хоть как-то проявиться, ему нужны дистанции субатомных размеров? Ответ мы уже знаем. Бозоны массивны, как гимнастические мячи, и им очень трудно перемещаться на дальние дистанции. Вероятно, вы не видите в этом ничего необычного, однако даже по самым простым теориям слабое взаимодействие, как и электромагнетизм и все прочие силы, должно иметь частицу-переносчик, лишенную массы. Почему же эти частицы совсем другие?
71
W-бозоны бывают двух разновидностей. Так набирается три.
В физическом мире быть непохожим на других – сомнительное достоинство. Физики любят симметрию. Это настоящая любовь. Они посылают симметрии нежные записочки на лекциях и встречают ее после занятий с цветами. В целом физики понимают под симметрией вот что: можно менять параметры системы, но физика, которая стоит за ней, не меняется при этом ни капельки.
Представьте себе, что вы поехали за город поиграть в мини-гольф с племянником и племянницей и, в соответствии с традиционными гендерными представлениями, даете племяннику синий мяч, а племяннице – красный. Когда вы начинаете раунд, неважно, у кого синий мяч, а у кого красный, поскольку на игровые качества мяча цвет никак не влияет.
А теперь представьте себе, что на полпути к лунке вы отвлекли детей вкуснейшим мороженым и тайком поменяли местами синий и красный мячики. Если вы признаетесь детям, что поменяли мячики, ничего страшного не случится. Они вернутся к игре на том месте, где остановились, просто теперь племянник будет бить по красному мячу, а племянница – по синему. Конечно, подменить только один мячик и сделать так, чтобы на поле оказалось два красных, нельзя: тогда дети не будут знать, по какому мячику бить, и вы испортите им чудесный день.
Давайте обратимся к более научным материям, нежели мячики и клюшки. Дейтерий – это вариант водорода, ядро которого состоит из протона и нейтрона. Если бы вы попытались заменить один из нейтронов протоном или наоборот, у вас бы получился феномен вроде лох-несского чудовища или снежного человека: очень занятный, но несуществующий. Физики так ценят симметрию, поскольку с фундаментальной точки зрения любые два электрона – или любые две элементарные частицы одного и того же типа – в точности одинаковы, неразличимы. На микроскопическом уровне нельзя сказать «тот электрон» и «этот электрон». Мы просто отмечаем, что их два.