Вход/Регистрация
Базы данных: конспект лекций
вернуться

Коллектив авторов

Шрифт:

4. Свойство ассоциативности:

1) для операции объединения:

(r1 r2) r3 = r1 (r2 r3);

2) для операции пересечения:

(r1 r2) r3 = r1 (r2 r3);

3) для операции разности:

(r1 \ r2) \ r3 /= r1 \ (r2 \ r3);

4) для операции декартового произведения:

(r1 x r2) x r3 = r1 x (r2 x r3);

5) для операции естественного соединения:

(r1 x r2) x r3 = r1 x (r2 x r3).

И снова мы видим, что свойство выполняется для всех операций, кроме операции разности. Объясняется это таким же образом, как и в случае применения свойства коммутативности. По большому счету, операциям объединения, пересечения, разности и естественного соединения все равно в каком порядке стоят отношения-операнды. Но при «отнимании» отношений друг от друга порядок играет главенствующую роль.

На основании вышеприведенных свойств и рассуждений можно сделать следующий вывод: три последних свойства, а именно свойство идемпотентности, коммутативности и ассоциативности, верны для всех рассмотренных нами операций, кроме операции разности двух отношений, для которой не выполнилось вообще ни одно из трех означенных свойств, и только в одном случае свойство оказалось неприменимым.

4. Варианты операций соединения

Используя как основу рассмотренные ранее унарные операции выборки, проекции, переименования и бинарные операции объединения, пересечения, разности, декартова произведения и естественного соединения (все они в общем случае называются операциями соединения), мы можем ввести новые операции, выведенные с помощью перечисленных понятий и определений. Подобная деятельность называется составлением вариантов операций соединения.

Первым таким вариантом операций соединения является операция внутреннего соединения по заданному условию соединения.

Операция внутреннего соединения по какому-то определенному условию определяется как производная операция от операций декартового произведения и выборки.

Запишем формульное определение этой операции:

r1(S1) x Pr2(S2) = <P> (r1 x r2), S1 S2 = ;

Здесь P = P <S1 S2> – условие, накладываемое на объединение двух схем исходных отношений-операндов. Именно по этому условию и происходит отбор кортежей из отношений r1 и r2 в результирующее отношение.

Следует отметить, что операция внутреннего соединения может применяться к отношениям с разными схемами отношений. Эти схемы могут быть любыми, но они ни в коем случае не должны пересекаться.

Кортежи исходных отношений-операндов, попавшие в результат операции внутреннего соединения, называются соединимыми кортежами.

Для наглядного иллюстрирования работы операции внутреннего соединения, приведем следующий пример.

Пусть нам даны два отношения r1(S1) и r2(S2) с различными схемами отношения:

r1(S1):

r2(S2):

Следующая таблица даст результат применения операции внутреннего соединения по условию P = (b1 = b2).

r1(S1) x Pr2(S2):

Итак, мы видим, что действительно «слипание» двух таблиц, представляющих отношения, произошло именно по тем кортежам, в которых выполняется условие операции внутреннего соединения P = (b1 = b2).

  • Читать дальше
  • 1
  • ...
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: