Шрифт:
Рис. 14. Пример анализа чувствительности
Анализ чувствительности показывает связь двух факторов проекта при неизменных остальных показателях. Чем сильнее зависимость, тем критичнее воздействие выбранного рискового фактора, тем больше внимания необходимо ему уделить.
Выделяют два вида анализа чувствительности:
• относительный анализ – результат выражается в процентах отклонения параметра от первоначального значения;
• абсолютный анализ – чувствительность выражается в единицах измерения исследуемого параметра.
Методика анализа чувствительности очень наглядна и является хорошей иллюстрацией влияния отдельных исходных факторов на конечный результат проекта. Однако главным недостатком является то, что анализируется влияние только одного из факторов, а остальные считаются неизменными. Если на практике изменяются сразу несколько показателей, применение данного метода может быть ограничено.
2. Сценарный анализ. Методы, применяемые в настоящее время в сценарном анализе, используют конечное число сценариев, каждый из которых требуется предварительно подготовить. Более простым представляется подход с непрерывным числом исходных альтернатив-сценариев, когда их множество задается указанием его границ. Сценарий должен быть вероятным.
Для выполнения сценарного анализа необходимо определить перечень критических факторов, которые будут изменяться одновременно. Для этого, используя результаты анализа чувствительности, можно выбрать 2–4 фактора, которые оказывают наибольшее влияние на результат проекта. Рассматривать одновременно большее количество факторов не имеет смысла, поскольку это только усложняет расчеты. Обычно рассматривают три сценария: оптимистический, пессимистический и наиболее вероятный, но при необходимости их число можно увеличить. В каждом из сценариев фиксируются соответствующие значения отобранных факторов, после чего рассчитываются показатели эффективности проекта.
Пример: необходимо рассчитать вероятность, что количество сбоев в системе не будет превышать значение X. Для этого выберем ключевой фактор для построения сценариев – объем выполняемых операций. В качестве дополнительных факторов выберем количество пользователей и нагрузку на систему. Для расчета эффекта возьмем несколько сценариев – по полученному значению (накопленное нормальное распределение) определим расчетную вероятность. Расчетная вероятность может быть определена как с помощью специальных программных пакетов, так и программы Excel путем имитации с использованием генерации случайных чисел. Именно с этой вероятностью количество сбоев в системе не будет превышать заданное значение X.
3. Построение дерева решений. Суть метода состоит в разбиении задачи на ряд подзадач и представлении в виде дерева решений, которое завершается исходами с субъективной вероятностью. Для оценки исходов используют весовые коэффициенты и распределяют элементы данных на все более и более мелкие группы.
Дерево решений – метод построения логически связанной цепи событий от текущего момента времени к будущему. Как правило, дерево решений используют, когда нужно принять несколько решений в условиях неопределенности и когда каждое решение зависит от исхода предыдущего или исходов испытаний. Составляя «дерево» решений, нужно нарисовать диаграмму, где «ствол» и «ветви» отображают структуру проблемы. Располагаются «деревья» слева направо или сверху вниз. «Ветви» обозначают возможные альтернативные решения, которые могут быть приняты, и возможные исходы, возникающие в результате этих решений. При построении соблюдаются хронология событий и логика принятия управленческих решений, выбирается наиболее оптимальное решение. Как показано в примере (рис. 15), расходы для первого варианта «новое оборудование» составляют $120, для второго варианта «модернизация» – $50. При этом вероятность востребованности расширенных возможностей составляет 0,65. Вероятность невостребованности этих возможностей составляет 0,35. Для нового оборудования востребованные возможности составляют доход $200, невостребованные возможности – доход $90. Для варианта установки нового оборудования при больших расходах получаем большую отдачу (которая может быть востребована или нет – варианты 1 и 2). Второй вариант – более дешевая модернизация оборудования с меньшими возможностями. Полученные результаты обеспечивают поддержку принятия решений при выборе оптимальной реализации проекта с точки зрения стоимости и вероятности наступления рискового события.
Рис. 15. Пример дерева решений
При построении дерева решений рассчитывается ожидаемая денежная стоимость для каждого из рассматриваемых вариантов (EMV – Expected Mone-tary Value). Если дерево содержит большое количество альтернативных решений, можно оценивать только наиболее приоритетные ветви. Ожидаемая денежная стоимость считается для одного или нескольких вариантов решений по следующей формуле:
EMV = Вероятность исхода1 x Стоимость исхода1 + Вероятность исхода2 x Стоимость исхода2 + … + Вероятность исхода(n) x Стоимость исхода(n).
Рассчитаем EMV для примера на рис. 13 по формуле EMV = (Доход – Расход) x Вероятность + (Доход – Расход) x Вероятность. Получим следующие значения:
EMV (Новое оборудование) = (200–120) x 0,65 + (90 – 120) x 0,35 = 41,5. EMV (Модернизация) = (120 – 50) x 0,65 + (60–50) x 0,35 = 49.
Далее выбирается вариант максимального EMV.
Метод деревьев решений позволяет специалисту определить оптимальную последовательность действий с учетом личных оценок и предпочтений. Ограничением практического применения данного метода является исходная предпосылка о том, что проект ИТ должен иметь обозримое или разумное число стратегий, а также слишком большая субъективность оценок вероятностей. Метод может быть полезен в ситуациях, когда решения, принимаемые в каждый момент времени, сильно зависят от решений, принятых ранее, и, в свою очередь, определяют сценарии дальнейшего развития событий.