Шрифт:
В любом случае вы пришли по адресу. Билл Фрэнкс предполагает, что вскоре мир наводнят не только большие данные, но и книги о больших данных. Я предсказываю (без всякой аналитики), что эта книга будет отличаться от прочих. Во-первых, она одна из первых на эту тему. Но, самое главное, она сконцентрирована на ином.
Большинство книг о больших данных будут посвящены управлению большими данными: тому, как собирать их в базу данных или хранилище данных, или тому, как структурировать и классифицировать их. Если вы много читаете о Hadoop, MapReduce или других методах хранения данных, это значит, что вы наткнулись на книгу, посвященную управлению большими данными.
Это, конечно, важная работа. Независимо от их объема и качества данные мало чем полезны, если их не поместить в такую среду и формат, которые позволят получить к ним доступ и проанализировать их.
Сама по себе тема управления большими данными не обеспечивает движения вперед. Для того чтобы извлечь пользу из данных, необходимо проанализировать их и совершить какое-либо действие на основании результатов анализа. Так же как традиционные инструменты управления базами данных не обеспечивали автоматический анализ данных о транзакциях, полученных из традиционных систем, системы Hadoop и MapReduce не производят автоматическую интерпретацию данных, полученных от сайтов, картирования генов, анализа изображений или других источников больших данных. Даже до наступления эпохи больших данных многие организации многие годы (а иногда и десятилетия) занимались исключительно управлением данными, не извлекая из них никакой пользы в плане улучшения качества анализа и принятия решений.
Думаю, эта книга акцентирует внимание именно на том, на чем нужно. Она в первую очередь посвящена эффективному анализу больших объемов данных, а не управлению ими. Она начинается с данных и переходит к таким темам, как фреймовое представление решения, построение аналитического центра и создание аналитической культуры. Разумеется, здесь упоминается об управлении большими данными, однако основное внимание уделено созданию, организации, подбору персонала и воплощению аналитических инициатив, которые позволяют извлечь из входных данных пользу.
На тот случай, если вы этого не заметили: в настоящее время тема аналитики крайне актуальна в бизнес-среде. Я занимался в основном вопросами конкуренции компаний в области аналитики, и мои книги и статьи по этой теме были самыми популярными из всех, что я когда-либо писал. Конференции на тему аналитики проводятся повсеместно. У таких крупных консалтинговых фирм, как Accenture, Deloitte и IBM, имеется большой практический опыт в этой области. Многие компании, государственные и даже некоммерческие организации сделали аналитику своим стратегическим приоритетом. Сегодня наблюдается повышенный интерес к проблеме больших данных, однако в центре внимания должны по-прежнему оставаться способы приведения этих данных в форму, позволяющую проанализировать их и использовать в процессе принятия решений.
Билл Фрэнкс находится в уникальном положении: он может описать пересечение области больших данных и аналитики. Его компания Teradata, в отличие от других поставщиков систем хранения данных, всегда была максимально сосредоточена именно на анализе данных и извлечении из них пользы для бизнеса. И хотя компания хорошо известна как поставщик корпоративных инструментов для хранения данных, Teradata в течение многих лет также предоставляла набор аналитических приложений.
За последние несколько лет Teradata наладила тесное партнерство с SAS – ведущим поставщиком аналитического программного обеспечения – для разработки высокомасштабируемых инструментов проведения анализа больших баз данных. Эти инструменты, которые часто подразумевают встроенный анализ в среде хранилища данных, предназначены для таких мощных аналитических приложений, как системы обнаружения мошенничества в режиме реального времени и крупномасштабного скоринга [1] покупательского поведения потребителей. Билл Фрэнкс – скоринг-директор по аналитике этого партнерства и поэтому имеет доступ к идеям и опыту в области проведения крупномасштабного анализа и «обработки в базе данных». Вероятно, лучшего источника на эту тему просто не существует.
1
Скоринг (англ. score – подсчет очков) – система оценки кредитоспособности, в основу которой положены численные статистические методы обработки анкет потенциальных заемщиков. Суть ее в том, что за каждую позицию анкеты («стаж работы» или «количество детей») потенциальный заемщик получает некое количество баллов. В зависимости от суммы набранных баллов принимается решение об одобрении или отказе в выдаче кредита. Прим. ред.
Так что же еще особенно интересного и важного содержится в этой книге?
• Глава 1 включает в себя обзор концепции больших данных и объясняет, что «размер не всегда имеет значение». На протяжении всей книги Фрэнкс отмечает, что большая часть данных вообще бесполезна и очень важно уметь отфильтровывать ненужные данные.
• Обзор источников больших данных в главе 3 – интересный, полезный и необыкновенно подробный каталог. Подход к веб-данным и веб-аналитике в главе 2 может заинтересовать людей и организации, которые стремятся понять поведение потребителей, совершающих покупки через интернет. Этот подход выходит далеко за рамки обычной веб-аналитики, ориентированной на отчетность.
• Глава 4 , посвященная «эволюции масштабируемости аналитических систем», представит вам технологические платформы для больших данных и аналитики с такой точки зрения, которую вы больше нигде не найдете. В ней автор также описывает такие современные технологии, как MapReduce, и разумно утверждает, что анализ больших данных потребует использования комбинации сред.
• Эта книга содержит ультрасовременные сведения о том, как создавать аналитические среды и управлять ими, – эти сведения вы также нигде больше не найдете. Если вы хотите познакомиться с новейшими размышлениями на тему «аналитических песочниц» и «аналитических наборов данных предприятия» (это была новая для меня тема, однако теперь я знаю, что они собой представляют и какое значение имеют), вы найдете их в главе 5 , которая также содержит важные замечания по поводу необходимости в системах и процессах управления моделями и скорингом.
• В главе 6 рассматриваются доступные сегодня типы аналитического программного обеспечения, в том числе программной среды R с открытым исходным кодом. Обычно очень трудно найти здравое рассуждение о сильных и слабых сторонах различных аналитических сред, однако здесь оно представлено. И наконец, описание методов анализа будет понятно даже далеким от техники людям.
• Третья часть книги сосредоточена на том, как управлять человеческим и организационным аспектами аналитики. В этом автор также опирается на здравый смысл. Мне, например, особенно понравился акцент на фреймовом представлении проблем и решений в главе 7 . Слишком многие аналитики принимаются за анализ, не задумываясь о более важных вопросах, связанных с постановкой проблемы.