Шрифт:
«Посмотрим, с какою точностью возможно, пользуясь цифрами , вычислить длину окружности, радиус которой равен среднему расстоянию Земли от Солнца (150 000 000 км).
«Если для взять 18 цифр, то ошибка на одну единицу в последней цифре вовлечет за собой в длине вычисляемой окружности погрешность в 0,0003 миллиметра; это гораздо меньше толщины волоса. [2]
«Мы взяли 18 цифр . Легко представить себе, какую невообразимо малую погрешность сделали бы, при огромности вычисляемой окружности, если бы воспользовались для всеми известными его цифрами.
2
«А площадь этого круга, — говорит Араго в другом месте книги, — можно вычислить с точностью до величины пространства, занимаемого мельчайшей пылинкой».
«Из сказанного ясно, как заблуждаются те, которые думают, будто науки изменили бы свой вид, и их применения много выиграли бы от нахождения точного , если бы оно существовало».
Итак, даже для астрономии, — науки, прибегающей к наиболее точным вычислениям, — не требуется вполне точного решения квадратуры круга.
Десять задач
1. В старину при определении площади круглого участка землемеры часто поступали так: считали круг равновеликим квадрату, периметр которого равен длине окружности измеряемого участка. Какую относительную ошибку (в процентах) они при этом делали, если принять =3,14? (Этот способ восходит к временам древнего Египта; он указан, наряду с другими, в папирусе Ринда. В средние века он был широко распространен также в Европе).
2. В древней египетской рукописи (в «папирусе Ринда») находим следующее правило для определения площади круга: она равна площади квадрата, сторона которого составляет
3. У нас встарину употреблялся сходный с древнеегипетским (см. предыдущую задачу) прием вычисления площади круга, рекомендуемый старинными русскими руководствами по землемерному делу площадь круга приравнивалась площади квадрата со сторонами равными
4. Валлис нашел (1656 г.) для вычисления следующий ряд
и т. д.
Лейбниц вывел (1674) такое равенство:
Почему этими равенствами нельзя воспользоваться для точной квадратуры круга?
5. Индусский математик Брамагупта (VII век) предложил для следующее приближенное выражение:
Как помощью этого выражения приближенно решить задачу о квадратуре круга?
6. Проверьте следующее приближенное равенство:
Как воспользоваться этим соотношением для приближенной квадратуры круга?
7. Проверьте приближенное равенство
Как воспользоваться им для приближенной квадратуры круга?
8. Проверьте следующее соотношение: периметр прямоугольного треугольника с катетами в
Как помощью этого соотношения приближенно решить задачу о квадратуре круга?
9. Голландский инженер Петр Меций нашел (в 1585 г.) для легко запоминаемое выражение
10. Придумайте самостоятельно какое-нибудь правило, практически удобное для быстрого приближенного вычисления площади круга.
Ответы и указания
1. Если радиус круга R, то площадь его R2, а длина окружности 2R, Квадрат, площадь которого старинное правило принимает равной площади круга, имеет сторону длиною
Отношение
показывает, что старинное правило дает преуменьшение почти на 22 %.
2. Из отношения
легко установить, что изложенное в задаче правило дает преувеличение примерно на 0,6 %.
3. Правило дает преуменьшение примерно на 2 1/2 %.
4. Оба выражения не решают задачи о квадратуре круга, потому что они не могут быть найдены помощью конечного числа математических операций.
5. Построив (рис. 6) прямоугольный треугольник с катетами в 1 и 3 единицы длины, получаем гипотенузу длиною в