Шрифт:
Суть генной терапии ВИЧ проста — у человека берутся его собственные иммунные клетки. В них с помощью генной инженерии вносятся мутации в гене CCR5, нарушающие его функцию, после чего клетки возвращаются пациенту. Немного рано говорить об эффективности данной терапии, но исследователи отмечают, что она приводит к значительному снижению числа частиц ВИЧ у большинства пациентов [376] . Кстати, один из способов направленного внесения мутаций в ген CCR5 иммунных клеток — доставка с помощью аденовирусов белка Casy и направляющей РНК. Этот метод генной инженерии мы подробно обсуждали в предыдущей главе.
376
Tebas P. et al.: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014, 370(10):901–10.
Другой генно-инженерный подход к борьбе с ВИЧ тоже основан на использовании белка Casy. Идея заключается в том, чтобы создать у клеток человека настоящий бактериальный иммунитет. С ВИЧ сложно бороться, так как он, будучи ретровирусом, встраивает свой геном в хромосомы человеческих клеток. В 2013 году группа японских ученых показала, что с помощью CRISPR/Casy-системы можно вырезать ВИЧ, встроенный в геном клеток человека [377] . Опыты проводились не на пациентах, а на отдельных клетках, но скоро могут начаться клинические испытания и на людях, и, вполне вероятно, лекарство от ВИЧ наконец будет найдено. Отдельно стоит отметить, что недавно ученые научились использовать Casy, чтобы разрезать не только ДНК, но и РНК [378] . Это открывает новые (и более безопасные) терапевтические возможности для направленной борьбы с вирусами.
377
Ebina H. et al.: Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013, 3:2510.
378
O’Connell M.R. et al.: Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014, 516(7530):263–6.
Врожденная мышечная дистрофия — еще одно наследственное заболевание, которое пытаются лечить с помощью генной терапии [379] . К сожалению, в данном случае эффективного лекарства пока не найдено. Тем не менее ученым удалось создать генетически модифицированных мышей, обладающих существенно увеличенной мышечной массой и физической выносливостью, почти как герой мультфильма «Супермышь» (Mighty Mouse) [380] . Можно ожидать, что в будущем мы сможем не только научиться лечить мышечную дистрофию, но и делать людей сильнее и выносливее.
379
Foster H. et al.: Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther 2012, 23(7):676–87.
380
Yamamoto H. et al.: NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 2011, 147(4):827–39.
Пока что генная терапия находится еще в самом начале своего развития, но в скором времени у нас будет арсенал безопасных вирусов, нацеленных на все ткани и органы человека, технологии дешевого производства этих вирусов и надежные генетические конструкции для исправления любых наследственных заболеваний. В компьютерной игре «Биошок» были «плазмиды», которые персонаж мог вколоть себе в кровь, чтобы приобрести сверхспособности. Ничего сверхъестественного генная терапия не обещает, но с ее помощью возможно усовершенствовать многие физиологические функции человека. Сделать мышцы крепче, поправить зрение, избавиться от лишнего веса, улучшить метаболизм и даже продлить молодость — все это легко представить в не столь отдаленном будущем.
Глава 15
Непорочное зачатие. Клонирование, химеры, гуманизация животных
Пятого июля 1996 года родилась самая известная в мире овечка — Долли. Она была «зачата» непорочно, то есть не в результате слияния яйцеклетки и сперматозоида, как это происходит у млекопитающих при половом процессе, а в результате переноса ядра из клетки молочной железы в неоплодотворенную яйцеклетку овцы. Собственное ядро из яйцеклетки было предварительно вынуто. Рождение Долли стало поводом для многочисленных научных, этических и религиозных дискуссий о возможности последующего клонирования человека и допустимости внедрения такой технологии в практику.
В природе клоны или генетически идентичные организмы встречаются повсеместно. Они возникают при делении одноклеточных организмов, при почковании гидры или дрожжей, при вегетативном размножении растений. Существуют группы животных, которые умеют в определенных условиях откладывать яйца, не требующие оплодотворения. В ряде случаев из этих яиц вылупляются клоны родительской особи, а называется этот процесс партеногенезом, бесполым размножением. Один из наиболее известных видов животных с партеногенезом — комодские вараны (хотя в их случае при партеногенезе образуются скорее «полуклоны», организмы, несущие половину наследственной информации матери).
Партеногенез позволяет этим животным осваивать новые экологические ниши, новые острова. Попав на остров и оказавшись без самцов, самка варана может самостоятельно отложить партеногенетические яйца. Эти яйца развиваются без оплодотворения, и из них вылупляются самцы [381] . Скрещиваясь с собственными потомками, одна-единственная самка сможет воссоздать популяцию варанов, производя на свет уже и самок, и самцов из оплодотворенных яиц. Но все-таки вараны предпочитают размножаться половым путем, ведь так поддерживается более высокое генетическое разнообразие в популяции.
381
Hedrick P.W.: Virgin birth, genetic variation and inbreeding. Biol Lett 2007, 3(6):715–6.
Довольно интересное чередование бесполого и полового размножения встречается у тли. Из перезимовавших яиц этих насекомых весной вылупляются только самки, которые размножаются исключительно партеногенезом. Полученные таким образом потомки тли отличаются от родителей только размерами. На этом этапе жизненного цикла у тли практикуется живорождение, почти как у млекопитающих [382] . Осенью, когда холодает, тля начинает все тем же бесполым образом производить сексуально активных самок, а также самцов. После скрещивания с самцами самки откладывают яйца, приспособленные к тому, чтобы пережить зиму. В теплых краях, где зимовать не приходится, некоторые виды тли могут непрерывно размножаться клонированием самих себя на протяжении многих лет.
382
Davis G.K: Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties. J Exp Zool B Mol Dev Evol 2012, 318(6):448–59.